Czech Technical University in Prague
Faculty of Electrical Engineering
Department of Computer Science

Specialized Path-based Technique to Test loT System
Functionality under Limited Network Connectivity

Doctoral Thesis

Ing. Matéj Klima

Prague, April 2023

Ph.D. programme: Informatics
Branch of study: Computer Science

Supervisor: doc. Ing. Miroslav Bures, Ph.D.
Supervisor-Specialist: Dr. Bestoun S. Ahmed Al-Beywaynee, Ph.D.

Thesis Supervisor:
doc. Ing. Miroslav Bures, Ph.D.
Department of Computer Science
Faculty of Electrical Engineering
Czech Technical University in Prague
Karlovo nameésti 13
121 35 Prague 2
Czech Republic

Thesis Supervisor-Specialist:
Dr. Bestoun S. Ahmed Al-Beywaynee, Ph.D.!
Department of Computer Science
Faculty of Electrical Engineering
Czech Technical University in Prague
Karlovo nameésti 13
121 35 Prague 2
Czech Republic

Copyright (©) April 2023 Ing. Matéj Klima

! Also with Dept. of Mathematics and Computer Science, Faculty of Health, Science and Technology,
Karlstad University, Sweden

Acknowledgements

I am deeply grateful to my thesis supervisor doc. Ing. Miroslav Bures, Ph.D., who
influenced my studies immensely. He introduced me to the system testing domain years
ago when I was working on my bachelor’s thesis. During my doctoral studies, he provided
me with the necessary background information on the current state of research and the
general rules of research work.

Secondly, I would like to offer my special thanks to Prof. Angelo Gargantini of the
University of Bergamo, Italy, who hosted me for some time at his research institution and
provided me with much advice for my research.

I would like to thank also Dr. Bestoun S. Ahmed Al-Beywaynee, Ph.D., who provided
important suggestions and improvements to my research work.

I gratefully acknowledge the support of funding sources that made this Doctoral The-
sis possible. The research was supported by the Grant Agency of the Czech Technical
University in Prague, grant No. SGS20/177/OHK3/3T /13 Algorithms and solutions for
automated generation of test scenarios for software and IoT systems.

Finally, I would like to express my gratitude to my parents and my partner Vendulka.
Without their understanding and encouragement over the past few years, it would be
impossible for me to complete my study.

il

Abstract

Existing Internet of Things (IoT) systems encounter several reliability-related issues,
among which the dynamic behavior of IoT systems under limited and unstable network
connectivity is yet to attract significant research attention. Several ad hoc approaches
can be employed to intuitively test this behavior. However, the effectiveness of ad hoc
methods for defect detection and the overall expenditure for testing limited network con-
nectivity remain unclarified. Therefore, this thesis presents a new specialized path-based
technique to test the processes of an IoT system in scenarios with limited or disrupted
network connectivity affecting these processes.

This technique can be scaled using four levels of test coverage criteria to determine
the strength of the created test scenarios. Additionally, we proposed three algorithms to
generate test cases for implementing the technique: breadth-first search graph traversal-
based test case composition, ant colony optimization-based search, and genetic-algorithm-
based test case composition. Subsequently, the effectiveness of the proposed approach was
compared with that of the two baselines. The first baseline comprised three standard path-
based testing approaches—Edge, Edge-pair, and Test Depth Level (TDL) 3 coverage—
applied to the discussed case. The second baseline was a possible solution utilizing a
standard path-based testing approach based on the test requirements, in which the test
scenarios are computed by a set-covering algorithm.

In the experiments, the proposed algorithms were implemented in an Oxygen platform,
which is an experimental model-based testing environment. To compare the effectiveness
of the algorithms, we defined 310 problem models comprising real-life project models,
artificially created models resembling the topology of real systems, and purely artificially
generated models offering diverse problem instances. Furthermore, we introduced artificial
defects into the models to evaluate the potential effectiveness of the individual algorithms
in detecting limited network connectivity related defects present in the system.

Although the ant colony optimization-based method yielded the best results for most
problem instances, the other two algorithms provided the best results for certain portions
of the problem instances. In certain cases, even the baseline test requirements-based
approach delivered the best results, an effect relatively common in the path-based testing
field in general. Therefore, all the compared algorithms were combined into a portfolio
strategy to ensure the generation of the best test set.

Overall, the proposed technique is applicable to numerous cases in which an IoT system
is operating under limited network connectivity, especially for testing mission-critical IoT
systems. Furthermore, the technique can be generalized to test scenarios in which a
system component undergoes failure, disconnection, or damage.

Keywords: Internet of Things, Reliability, Path-based Testing, Model-based Testing,
Test Automation, Limited Network Connectivity, Test Case Generation.

Anotace

Soucasné projekty systému internetu véci (IoT) se ¢asto potykaji s problémy souvise-
jicimi s bezpecnosti a spolehlivosti, mezi kterymi hraje vyraznou roli chovani systému
pri omezeném ¢i nestabilnim sitovém pfipojeni. Pres jeho vyznam tomuto problému do-
posud nebyla v oblasti vyzkumu vénovana dostatecné pozornost. Pro testovani tohoto
chovani lze pouzit riizné ad hoc pristupy, avsak je obtizné odhadnout jak jejich ti¢innost,
tak jejich redlnou nékladnost. Tato prace proto predstavuje novou techniku zalozenou na
prichodech procesii systému (path-based testing) pfimo zaméfenou na testovani scénaii
s omezenym ¢i narusenym sitovym piipojenim ovliviiujicim tyto procesy.

Tato technika mize byt skdlovana pomoci ¢tyf trovni kritérii pokryti testd, které
urcuji i¢innost a cenu vytvorenych testovacich scénaiti. Déale jsme navrhli tii algoritmy
pro generovani testovacich scénaiti z modelu testovaného systému: algoritmus zalozeny
na prohledavani grafu do 8itky, algoritmus zalozeny na simulovaném chovani mravenci
kolonie a adaptace genetického algoritmu. Néasledné jsme porovnali t¢innost navrzeného
pristupu s i¢innosti dvou existujicich zpisobu generovani testovacich scénaiia. Prvni zpi-
sob zahrnoval tii standardni v pramyslu pouzivana kritéria pokryti testi: pokryti hran,
pokryti dvojic hran a kritérium Test Depth Level 3. Druhym srovndvanym zpisobem
bylo vyuziti piredchoziho algoritmu zalozeného na tzv. testovacich pozadavcich.

Pro experimentalni ovéfeni byly navrzené algoritmy implementovany v ramci plat-
formy Oxygen. Abychom porovnali efektivitu algoritmi, vytvofili jsme 310 rtznych mod-
el testovaného systému. Cést téchto modeli pochazela z realnych projekti vyvoje IoT
systémi, cast byla vytvorena uméle tak, aby modely svoji topologii pfipominaly reilné
systémy a posledni ¢ast modelt byla pro vétsi riznorodost vygenerovana ¢isté uméle. Déle
jsme do modelu zavedli umélé defekty zptusobené omezenym sitovym pripojenim, abychom
vyhodnotili potencialni efektivitu jednotlivych algoritmu pfi detekci téchto defekti.

Pro vétsinu modelu systému v téchto experimentech prinesla nejlepsi vysledky metoda
zalozend na simulaci chovani mravenc¢ich kolonii. Pro urcitou mensi ¢ast modeld vSak
poskytly nejlepsi vysledky i zbylé dva navrzené algoritmy. V malém poctu pripadi
dosahl nejlepsiho vysledku dokonce i existujici pfistup zalozeny na testovacich poza-
davcich. Vysledek neni pfekvapivy, jedna se o relativné béznou situaci v oblasti testovani
procesu systému. Abychom tedy zajistili generovani nejlepsi sady testovacich scénéit pro
algoritmy do tzv. portfoliové strategie.

Navrzena technika je dobfe pouzitelnd v mnoha situacich, kdy IoT systém funguje s
omezenou sitovou konektivitou, zejména pro testovani kriticky dulezitych systému IoT.
Techniku lze dale zobecnit na testovaci scénare, ve kterych dojde k selhani, odpojeni nebo
poskozeni konkrétni soucasti systému.

Klicova slova: Internet véci, spolehlivost, testovani na zakladé cest, testovani na zakladé
modelu, automatizace testovani, omezené sitové piipojeni, generovani testovacich pripadu.

vil

List of Tables

4.1
4.2
4.3

4.4

7.1
7.2
7.3
7.4

8.1

8.2

Test case evaluation criteria €.
The values of the constants for the ANT algorithm.
The initial values of the variables and the values of the constants for the

AGA algorithm.
Time and space complexity of the proposed algorithms.

Existing third-party IoT systems, whose models were used in experiments.
Overall properties of SUT models used in experiments.
Complete overview of SUT models used in experiments (Part 1).
Complete overview of SUT models used in experiments (Part 2).

Average values of test set evaluation criteria over all G for the AllBorder-
Combinations and FachBorderOnce test coverage criteria.
Average values of test set evaluation criteria over all G for the Comprehen-
siweAllBorderCombinations and ComprehensiveFEachBorderOnce test cov-
erage criteria. Lo e

1X

36

List of Figures

2.1

4.1

4.2
4.3
4.4
4.5

7.1
7.2
7.3
7.4

8.1

8.2

8.3

8.4

8.5

8.6

Example of an SUT problem model, a set of test requirements, and a
resulted set of test paths. L 7

Initial example of an SUT affected by a network connectivity outage in
its submodule and a path-based test case enabling the test of the SUT

behavior in such situations. Lo Lo 23
[ustration of defined model elements in exemplary IoT system. 25
High-level view at the DTA functionality in a defense operation. 27
UML diagram of DTA with stealth mode process. 27
An LNCT example problem model of a DTA with stealth mode process. . 28
Sample SUT model with highlighted LCZs in the Oxygen application. . . . 70
Highlighting selected test cases in a SUT model in the Oxygen application. 71
Distribution of sources of SUT models used in experiments. 74
Visualization and manual definition of artificial defects in Oxygen application. 75

Algorithm comparison for All BorderCombinations test coverage criterion

through the test set evaluation criteria. 82
Algorithm comparison for Each BorderOnce test coverage criterion through

the test set evaluation criteria. L oo 83
Algorithm comparison for Comprehensive All BorderC'ombinations test cov-
erage criterion through the test set evaluation criteria. 86
Algorithm comparison for Comprehensive EachBorderOnce test coverage
criterion through the test set evaluation criteria. 87
The visualization of the number of SUT models for which the individual
algorithms produced the best 7' (part 1). 91
The visualization of the number of SUT models for which the individual
algorithms produced the best 7" (part 2). 92

x1

List of Acronyms

ABC Artificial Bee Colony. 14
ACO Ant Colony Optimization. 11, 12, 14, 15, 35, 109

AGA Adapted Genetic Algorithm-based paths generation. 31, 44-49, 51, 59, 63, 67, 69,
71, 76, 79-81, 84, 85, 88-90, 93-99, 105, 109-111

ANT Ant Colony Optimization-based algorithm. 31, 35-37, 39, 63, 67, 69, 71, 76, 79,
80, 84, 88-90, 93-101, 105, 109-111

CFG Control Flow Graph. 9, 11-14
COP Edge connection outage probability. 24, 72

CRUD Create, Read, Update, Delete. 8

DFT Data-flow Testing. 8, 9, 11, 13, 47, 112

DTA Digital Triage Assistant. 26
GA Genetic Algorithm. 12-15, 46-49

LCZ Limited Connectivity Zone. 18, 24, 25, 29-32, 34-47, 49-51, 53, 55-60, 64, 65,
70-75, 93, 95, 100, 101, 110

LNCT Limited Network Connectivity Test. 2, 3, 21, 31, 67, 70, 73, 103, 104

LTE Long Term Evolution. 16

MBT Model-based Testing. 5, 11, 17, 69, 103, 107
OSI Open Systems Interconnection. 16

PSO Partical Swarm Optimization. 14

SBSE Search-based Software Engineering. 10
SBST Search-based Software Testing. 10

SPC Shortest Paths Composition. 31, 63, 67, 69-71, 76, 79, 80, 84, 8890, 93-100, 105,
109-111

xiii

SUT System Under Test. xvi, 2, 3, 5, 6, 8-17, 20-26, 29-31, 33, 34, 37-41, 43, 46, 49,
50, 52, 53, 55, 58, 60, 6471, 73-76, 79, 89, 90, 93-101, 103106, 109-111

TDL Test Depth Level. 2, 63, 64, 80, 81, 85, 89, 94, 96, 98, 102, 106, 111

TR Test Requirements-based algorithm. 63-65, 67, 69, 76, 79, 80, 84, 89, 90, 93-97, 99,
105, 109-111

UML Unified Modeling Language. 12, 13, 15, 17, 69

Contents

List of Tables ix
List of Figures xi
List of Acronyms xiii
1 Introduction 1
2 Related Work 5
2.1 Model-based Testing and Used Models 5)
2.2 Preliminaries and the Path-based Testing 6
2.3 Data-flow Testing 8
2.4 Analysis of Existing Algorithms and Strategies 9
2.4.1 Search-based Software Engineering Strategies 10
2.4.2 The Ant Colony Optimization Approach 11
2.4.3 The Genetic Algorithm Approach 12
2.4.4 Other Nature-inspired Approaches 14

2.5 Alternative Techniques for Testing loT System Functionality with a Lim-
ited Network Connectivity 15
2.6 Summary of Related Work and Motivation 17
3 Thesis Statement and Research Questions 19
4 Proposed Limited Network Connectivity Technique 21
4.1 Model of the Problem 24
4.1.1 Problem Model Transformation Guidelines 25
4.1.2 Problem Model Transformation Example 26
4.2 Test Coverage Criteria 29
4.3 Test Set Evaluation Criteria, 30
4.4 Proposed Algorithms 31
4.4.1 Shortest Paths Composition Algorithm 31
4.4.2 Ant Colony Optimization-based Algorithm 35
4.4.3 Adapted Genetic Algorithm 44
4.4.4 Complexity of the Proposed Algorithms 59
5 Baseline Algorithms 63
5.1 Imitial Baseline 63
5.2 Test Requirements-based Algorithm 64
5.2.1 The Main Algorithm 64

XV

6

7

9

10

11

12

5.2.2 Extraction of Test Requirements
Portfolio Strategy

Methods of the Experiments

7.1 TImplementation of Algorithms
7.2 Sources of System Under Test (SUT) Models used in Experiments
7.3 Simulation of System Defects 0.
7.4 Detailed SUT Models Properties
7.5 Computation of Test Cases

Results of the Experiments
8.1 Properties of Test Sets Produced by Compared Algorithms
8.2 Algorithms that Produced the Best Test Sets for Particular SUT Models

79
79
89

8.3 Effectiveness of Limited Network Connectivity Defects Detection in the SUT 93

8.4 Results of the Portfolio Strategy
8.5 Time Effectiveness of the Algorithms

Discussion
Practical Applicability of the Proposed Technique

Threats to Validity
11.1 Internal Validity Threats
11.2 External Validity Threats,

Conclusions
12.1 Future Directions

List of Publications Related to Thesis Topic

A.1 Published IF Journal Papers
A.2 Published Conference Papers.
A.3 Registered Patents
A.4 TF Journal Papers Under Review

List of Other Publications Related to IoT Testing

B.1 Published IF Journal Papers
B.2 Published Conference Papers.
B.3 Registered Utility Models
B.4 Patent Applications Under Review

Bibliography

94

99

103

105
105
106

109
111

113
113
113
114
114

115
115
115
116
116

126

Chapter 1
Introduction

In the past decade, IoT systems have significantly advanced from an initial hype to a
daily-life technological reality that impacts individuals’ work processes and lifestyle [1]-
[4]. This growth has created several challenges in terms of quality, usability, security,
and reliability of these systems, especially for those with a mission-critical nature [5]-[8].
Among these issues, the reliable functionality of a dynamic IoT system becomes critical
if the system components or its processes are operating with limited or unstable network
connectivity [5], [6]. In this thesis, limited connectivity may refer to a complete network
connectivity outage, intermittent connectivity, significantly low bandwidth, high network
error rate, or any state that might negatively influence the reliability and functionality of
an [oT system.

Why are the IoT systems specific at this point? In case of the commonly used web-
based client-server architecture of software information systems, the server side (back-end)
is generally static in the spatial sense and connected to a stable network. In contrast,
the client side may physically shift and be subject to limited network connectivity or
even temporary network outages. This situation is typical in rural or sea areas with
weak or no wireless network coverage or in tunnels in urban areas. In such scenarios,
users are prepared to tolerate network connectivity issues and interact with the system
accordingly. However, in case of dynamic IoT systems, connected devices such as sensors,
actuators, and even the back-end infrastructure can be spatially displaced, and they are
more sensitive to limited or disrupted network connectivity. Examples of dynamic sensor
networks in which the geographical location of devices varies during system operation
include systems in smart farming, smart cars, intelligent transportation, and defense and
logistics systems [9], [10].

As such, the reliability of the service provided by the system to its users must be main-
tained and the system behavior should remain deterministic even if the IoT system or its

components experience limited or disrupted network connectivity. Although users may

accept the restricted system functionality in such scenarios, they must be timely notified
and the system cannot interrupt actual transactions, lose data, enter an unexpected state,
crash, or become unresponsive. In dynamic IoT systems subjected to network connectiv-
ity limitations, their functionality must be tested under these conditions. Accordingly,
optimal testing must be performed to ensure effective detection of relevant defects and
reduce the costs associated with such testing. This economic aspect is one of the primary
motivations of the following proposal. In addition, the desired reliability and safety of
mission-critical IoT systems under limited network connectivity may be achievable only
with a proper test automation method.

This thesis proposes the Limited Network Connectivity Test (LNCT)—a novel and
specialized technique that generates test scenarios to test the functionality of an IoT
system under limited network connectivity. In principle, the LNCT is based on the es-
tablished path-based testing discipline [11], [12] and defines a specialized SUT model for
implementing the technique. Based on this model, we proposed three novel algorithms
for automated test-case generation and four baselines to compare the performance of the
proposed algorithms.

The baselines included an Edge, Edge-pair, and Test Depth Level (TDL) 3 established
test coverage criteria, and a solution using a standard path-based testing approach, based
on the established test requirements concept and test paths computed by a set-covering
algorithm proposed by Li et al. [13].

The effectiveness of all three proposed algorithms was evaluated based on the proper-
ties of the generated test cases with several criteria considering the number of test cases,
their length, ratio of unique test steps, and others (detailed in Section 4.3). Moreover, we
evaluated the defect detection potential of the generated test cases and compared their
efficiencies with the baselines.

The contributions of this dissertation are summarized as follows:

1. Formulation of a problem model and four novel test coverage criteria addressing the

testing problems for IoT systems operating with limited network connectivity.
2. Proposal of three algorithms to generate test scenarios for this testing problem.

3. Formulation of four baselines and a comparative analysis of their performance with

that of the proposed algorithms.

4. Conducting an evaluation study with 310 experimental SUT models, wherein the
properties of the generated test scenarios were compared in terms of the testing
expenditure, based on the number of test steps and the potential of test cases for

detecting the defects in a SUT.

CHAPTER 1. INTRODUCTION 3

5. Introduction of a portfolio strategy that combines all proposed algorithms to yield
the best result for various possible SUT models that might occur in industrial prac-

tice.

The remainder of this thesis is organized as follows: the related literature is analyzed
in Section 2, and the motivation of this research is summarized in Section 2.6. Based on
this motivation, the thesis statement and research questions are elaborated in Section 3.
Thereafter, the principles of the proposed technique are described in Section 4. In addi-
tion, the SUT model, test coverage criteria, and test set evaluation criteria are introduced
in Sections 4.1, 4.2, and 4.3, respectively. Thereafter, the three novel algorithms proposed
for generating test sets from the SUT model are discussed in Section 4.4, and the base-
line algorithms used in the present experiments are described in Section 5. Subsequently,
in Section 6, the three proposed algorithms were combined with one of the baselines to
formulate a portfolio strategy for obtaining the best test set for a given SUT model.

Furthermore, the experimental design, including the implementation of the proposed
algorithms, sources and properties of experimental SUT models, and the simulation of
limited network connectivity-related defects of SUT instances are presented in Section 7.
Thereafter, the experimental results are detailed in Section 8. In particular, the results of
the individual algorithms were analyzed, followed by the analysis of the portfolio strategy
and algorithm run times. In Section 9, we discussed the results, analyzed the vital findings,
and inferred conclusions from the data. Moreover, the practical applicability of the LNCT
is highlighted in Section 10, wherein the proposed LNCT was extended to a broader range
of testing tasks. The threats against validity and taken steps of minimizing their possible
impact are analyzed in Section 11. Finally, the major findings of this thesis and the new

research stream opened by this Ph.D. project are summarized in Section 12.

Several parts of this thesis were published in our previous papers, namely an initial
study describing the concept of LNCT [14], and a study comparing two of the presented
algorithms with a baseline [15]. One of our real IoT projects used as the source of system
models in the experiments was also described in a dedicated article [16].

Another study, comparing a genetic-algorithm-based solution with baselines, titled
Genetic Algorithm for Path-based Testing of Component Outage Situations in IoT System
Processes, is now under review in IEEE Internet of Things journal.

The concept of LNCT and an initial algorithm computing the test cases were registered
as United States patent 1,194,700 B2 and is also registered as United Kingdom patent
GB2594346.

Some parts of the text in this thesis are based on the descriptions in these publications

or documents and may partially overlap.

Chapter 2

Related Work

Relevant to the current research topic and proposal, eight directions of related literature
must be analyzed: (1) general Model-based Testing (MBT) context, (2) path-based test-
ing preliminaries and related techniques and algorithms, and (3) existing data-flow testing
techniques, as they partly overlap with path-based testing techniques. In addition, exist-
ing algorithms resolving problems similar to the current research question, in particular
(4) search-based software engineering methods providing specific solutions to path-based
testing problems, (5) ant-colony optimization techniques in MBT, (6) previous employ-
ment of genetic algorithms in MBT, (7) other nature-inspired algorithms employed in
similar cases, and (8) alternative approaches to reliability testing of IoT systems under
conditions of weak network coverage.

These eight directions of relevant research literature are discussed in the following

subsections.

2.1 Model-based Testing and Used Models

MBT is based on the definition of the SUT model and the subsequent generation of test
cases from this model [11], [12]. These test cases must satisfy a specified test coverage
criterion, which is a set of rules determining the properties of the test cases. A model
is created for a selected part or aspect of the SUT. As MBT can significantly improve
the effectiveness of the entire system development process [17], it has been extensively
researched in recent decades [18], [19] and is widely used in industry [20]. Moreover, its
application scenarios are extremely diverse, for instance, automobiles, cell phones, and
web-app development [21]-[23|. Furthermore, MBT can be applied across various types
and levels of testing, such as unit testing [24], system testing [25], integration testing [26],
and regression testing [27].

The selection of a specific MBT technique depends on the test strategy and character-

istics of the SUT, which correspond to a specific modeling notation [18]. As the method
proposed in this thesis is based on the SUT process model, which is an extension of a
directed graph, path-based testing techniques [11], [12] and data-flow techniques [28] are

natural candidates for a detailed investigation of related research.

2.2 Preliminaries and the Path-based Testing

Starting with the state-of-the-art path-based testing, an established model of the problem
is available, and several test-case-generating algorithms have been proposed for various
test coverage criteria [13], [29]-(33]. In principle, the general concept of the path-based
testing problem model is based on a directed graph G = (N, E, ng, N.), where N denotes
a nonempty finite set of nodes, F C N x N is a finite set of edges, n, denotes a start node
of G with no incoming edges, and N, denotes a set of end nodes of G with no outgoing
edges [11], [12], [31]. For modeling an SUT, the literature offers two options based on the

representation of the process actions and decision points:

— A function, activity, an action, or a decision point in a process is captured by n € N
and the transition between two functions, activities, actions, or decision points by
e € F[12].

— Only the decision points in a process are captured by the nodes N. Individual func-
tions, activities, or actions between the decision points, including the sequences of
the functions, activities, or actions uninterrupted by any decision point, are modeled
by edges E [34].

A test case is typically defined as a path from ng to any node n, € N.. A set of test
cases must satisfy a defined test coverage criterion. From the most common criteria, the
FEdge, Edge-pair, and Prime path coverage can be mentioned [12], [31]. To satisfy the
FEdge coverage, each edge of G must be present at least once in at least one test case t
in a set of test cases T [12]. To satisfy Edge-pair coverage, each possible combination of
the two adjacent edges in G must be present at least once in at least one ¢t € T [12]. To
satisfy Prime path coverage, each prime path in G must be a subpath of a test caset € T
A path between two nodes of G is considered a prime path, if is a simple path (no inner
node appears more than once in the path) and it does not appear as a proper subpath of
any other simple path [12].

In general, individual algorithms support both modeling alternatives [13], [30]-[33].
As individual algorithms differ in their ability to provide the best solution for satisfying
the given test coverage criteria, combining them to a portfolio strategy is a practical

alternative for the testing practitioner [31].

CHAPTER 2. RELATED WORK 7

Test Requirements satisfying
Edge-pair coverage

1.[1-2]
2.[1-3]
3. [2-5]
4. [3-4]
5. [3-6]
6. [3-7]
7.13-8]
8. [4-2]
9. [4-3]
10. [7-9]

Test Paths

1. [1-2-5]
2. [1-3-4-2-5]
3. [1-3-4-3-6]
4.[1-3-7-9]
5. [1-3-8]

Figure 2.1: Example of an SUT problem model, a set of test requirements, and a resulted
set of test paths.

Considering the principle and objective of the proposed technique explained in Section
4, the current concepts that facilitate the touring of defined sequences of two non-adjacent
edges (or nodes) in a path must be analyzed. The fundamental concept involves the set of
test requirements, which are paths in G that must all be present as subpaths in the test
cases [12], [29]. An example directed graph of a SUT processes, a set of test requirements
that satisfies the Edge-pair coverage, and a resulted set of test paths is depicted in Figure
2.1.

Regarding the complexity of a general path-based testing problem, it depends on the
selected test coverage criterion and the type of cost for which the set of test cases is
minimized. Various options exist for defining the cost of the test cases. We can (1)
minimize the size of the set of test cases (in terms of the number of test cases) that
leads to a polynomial (P) time complexity - this problem is in a P class of computation
problems. Nonetheless, the other common options are significantly more complex, result-
ing in nondeterministic polynomial-time complete (NP-complete) complexity, such as (2)
minimizing the total number of nodes in the test set, (3) maximizing the ratio of the
number of test requirements in the test paths, and (4) bounding the ratio of the number
of test requirements in the test paths [35]. Therefore, proposing novel algorithms to solve
these problems and comparing their effectiveness with those of existing algorithms is an
important research direction.

As for the existing algorithms that create test cases, if not explicitly designed to satisfy

a particular test coverage criterion, they typically accept test requirements as one of their
inputs [13]. These test requirements are a concept that can be partially but not completely
applied to solve the current research problem that is the subject of this thesis.

To model the current problem via test requirements assuming that the network con-
nection is interrupted and restored in only one part in the tested process, we can define
a set of test requirements R = {Tinterrupteds Trestored), Doth of which is one edge long.
In particular, 7i,serruptea models an SUT function in which the network connectivity is
interrupted, and 7,.cs0req¢ models an SUT function in which the network connectivity is
restored. In this example, 7 erruptea Must be followed by 7,esioreq in the test case, ensuring
that the path from ng to any node of NNV, is minimal.

Although certain algorithms accept R as an input work to optimize the final test
set, there is no assurance that r,terrupted Will be followed by 7,cstorea- To the best of our
knowledge, no published algorithm accepted additional constraints that define the order of
the input test requirements. This is because there is no motivation for such functionality
in standard path-based testing, and the algorithm generating the test set would become
unnecessarily complex.

However, such a functionality is essential for the problem described in Section 4.

Partially, the concept of the test requirements can be applied if, in the discussed
example, R = {a path from 7i,terrupted O Trestorea §- The algorithms that accept R can be
employed [13] and must be accompanied by an additional algorithm to prepare such a set of
test requirements, which we applied in this study to develop the Test Requirements-based
algorithm, one of the baselines for the comparative analysis of the proposed algorithms
(detailed in Section 5.2).

Considering that more "7jpterrupted a0d Trestorea’ Pairs can be present in the model, it
is practically undecidable if such an approach yields the best solution. This uncertainty
motivates the exploration of new alternative algorithms that provide the best solution to

a defined problem, as we do in this thesis.

2.3 Data-flow Testing

Data-flow Testing (DFT) is another field that provides relevant information. This field
overlaps with the general path-based testing, as discussed in Section 2.2. Generally, data
flow testing is not classified as a subset of path-based testing, because the DFT problem
can be solved by alternative means, for instance, employing a Create, Read, Update,
Delete (CRUD) matrix as an SUT model [34], [36]. Nonetheless, these two fields include
a certain degree of overlap.

As the DFT principle has features similar to the problem solved in this thesis, this

CHAPTER 2. RELATED WORK 9

field is a natural candidate for detailed analysis. In this analysis, we focus on a relevant
subpart of DFT based on directed-graph-based SUT models.

The DFT concept was introduced by Herman [37] in 1976 and has been thoroughly
studied in recent decades. Recently, Su et al. [28] summarized the advantages and limi-
tations of DFT and analyzed three types of data flow tests. The first type is called static
and is based on static analysis and its search for patterns of data anomalies; the second
type is dynamic, which locates invalid data usage during program execution [38]; the third
option, hybrid, combines the previous two principles [28]. Notably, dynamic DFT is rele-
vant to our thesis and its main principle is to verify the variables of the SUT by inspecting
their definition and use, which is accomplished by extracting the def-use pairs from the
code. Each pair is tested according to the selected test coverage criterion [28]|. Although
numerous test coverage criteria can be screened for selection [39], prior research suggests
that the most effective criterion is the all-uses criterion that covers every definition and
use associations in the program at least once [40]. The dynamic DFT process involves
the (1) construction of the program’s Control Flow Graph (CFG), (2) identification of
relevant paths in the CFG that satisfy the given coverage criterion, and (3) test data
generation to execute the set of paths [41].

A CFG is a directed graph constructed from the source code of an SUT containing
nodes and edges. The nodes in the CFG represent a block (linear sequence) of program
instructions with a single entry point (the first instruction executed) and an exit point
(the last instruction executed). The edges connecting the nodes in the CFG represent the
transitions between the control blocks in the control flow of a program during execution
[42].

Although the CFG is used as the underlying model of the problem in DFT, which
differs from the problem model specified in Section 4.1, the principle of finding paths with
specific pairs of nodes in the CFG to ensure their presence in test cases is similar to that
of sequencing 7interrupted AN Trestorea i1 the SUT model. However, for the coverage criteria
specified in Section 4.2, the path between 7nterrupted and Trestorea must be directed to lead
inside the SUT model part affected by limited network connectivity, i.e., not leaving it
by any node other than that present in 7,.s0req. This contributes to the novelty of the
proposal presented in this thesis and its difference from previous techniques in the DFT
field.

2.4 Analysis of Existing Algorithms and Strategies

We deliberately analyzed the existing algorithms and strategies in a separate section

because, in certain cases, the contexts of path-based testing and DFT inevitably overlap.

In contrast to previous sections that provide the overall context and explain the prob-
lem models including their possible limitations, here we focus on the principle of the
strategies and algorithms in more detail.

In relation to the principles of these algorithms, search-based and nature-inspired algo-
rithms are two of the relevant streams analyzed in this thesis, as these are the traditional
sources for pertinent studies in path-based testing. Generally, search-based and nature-
inspired algorithms have to be understood as conceptually different categories [43], [44].
However, an algorithm or strategy can be search-based and also belong to nature-inspired

algorithms.

2.4.1 Search-based Software Engineering Strategies

Several approaches exist for locating test paths in models, and Su classifies them into five
main groups [28]. We further inspect the most researched one, the search-based approach
that involves the use of a metaheuristic. Some other categories from the Su classification
are, for example, a collateral coverage principle, which optimizes test set generation when
covering multiple test objectives by the individual test cases, and a random testing-based
approach that locates the test cases in the input set at random [28].

Generally, metaheuristic search-based optimization techniques used to solve general
combinatorial problems in software engineering are referred to as a Search-based Software
Engineering (SBSE) [43], [45]. In the testing domain, the field is called Search-based
Software Testing (SBST), and its techniques are employed for combinatorial and path-
based testing [46]. The SBSE and SBST methods look for solutions in an extremely
large search space with numerous constraints and competing and conflicting objectives.
Therefore, an appropriate fitness function is often used to guide the search for the best
solution [47]. Several SBST techniques are relevant to our research. These techniques
generate paths in the graphs, modeling the SUT processes [29], [48|.

Harman describes the concrete methods to perform the test paths selection [49]. He
divides the techniques into two categories: classic techniques, such as linear programming
and the branch and bound method; and a metaheuristic search, which consists, for exam-
ple, of hill climbing, simulated annealing, and genetic algorithms methods. Another class
of algorithms (that find solutions in vast search spaces) is a nature-inspired algorithms
class, simulating, for example, the behavior of ants [50], bees [51], fireflies [52], particle
swarms [53|, and even microorganisms [30]. Recently, Dey et al. described this class of
algorithms in great detail [54].

The concrete implementation of the individual SBSE and SBST methods has been
thoroughly studied in recent decades. Due to its straightforwardness and high effectivity,
the most researched method in SBSE is probably the genetic algorithm [55]-[59].

CHAPTER 2. RELATED WORK 11

SBST provides several approaches that could be used to solve the problem presented
in this thesis. Hence, we have selected two SBST methods, utilizing ant colony optimiza-
tion and genetic algorithm, and combined them with two other algorithms using different
principles (employing the breadth-first search-based graph traversal principle and exten-
sion of an existing set-covering algorithm) to create a well-balanced portfolio that would

yield the best results for any given problem instance.

2.4.2 The Ant Colony Optimization Approach

Marco Dorigo introduced the Ant Colony Optimization (ACO) algorithm [60], [61] in his
Ph.D. thesis in the early 90s. Inspired by the behavior of ants while they are searching
for the shortest path to their food source, it became an effective instrument in solving
many graph traversal-related nondeterministic polynomial (NP) problems. In the ACO
implementation, ants are individual agents that traverse a search space between specific
start and target points. The traversal is guided by the combination of pheromone disposal
and desirability, information connected to the edges of a graph being traversed. Each
ant leaves a pheromone trace on every edge it visits, which evaporates after some time.
Therefore, the shorter the path between the source and target points, the stronger the
intensity of the pheromone trace. The desirability value determines the quality of a given
edge, and therefore, its formulation depends on the problem definition. It can represent,
for example, a distance (number of edges) between the points for the shortest-path-related
problems or a heuristic value for the traveling salesman problem [62].

The use of the ACO approach for test case generation was proposed recently in several
studies. An example of this is one that was carried out by Srivastava et al., modeling
an SUT by a CFG [63]. In this proposal, the ants traverse the SUT model from a start
node to one of the end nodes, led by a combination of pheromone disposal (the quantity
of pheromones left on the edges) and a heuristic value on the edges, prioritizing those not
visited yet. Their method satisfies all-path coverage in the generated set of paths [63].

To generate test sequences effectively, taking into account the importance of covering
the most critical states, Srivastava et al. use Markov chain-based statistical MBT as
well as the ACO algorithm [50]. In this method, the SUT model contains probabilities of
transitions between individual application states, from which test engineers can effectively
generate test cases that match their testing priorities. Altogether, this proposed method
gives good coverage of critical nodes with a small number of test sequences [50]. A similar
technique is also proposed by Sayyari and Emadi [64].

Furthermore, Ghiduk proposes using the ACO algorithm for the DFT. He uses ACO
not only to search a CFG for paths that satisfy all-path coverage but also to generate a
suite of test data that activate those paths in the CFG [65].

To summarize the related work in this field, we describe our findings using our SUT
model elements, as explained in Section 4.1. Although the analyzed techniques offer the
possibility of defining the critical states that must be present in 7', which could potentially
be used in our defined model to cover the Limited Connectivity Zone border nodes, these
techniques do not ensure the sequence of nodes in the test cases, as our concept requires.
By using analyzed previous techniques, it is not certain that an Limited Connectivity
Zone IN node n;, € in(G,threshold) precedes an Limited Connectivity Zone OUT node
Nout € out(G,threshold) in zone L € L(G,threshold). Therefore, we would not be able
to guarantee satisfying the selected test coverage criterion (see Section 4.2) by previous
techniques. Our proposed approach satisfies these test coverage criteria, making it a
novel contribution among established path-based testing techniques, including those that

employ the ACO approach.

2.4.3 The Genetic Algorithm Approach

John Holland settled the basic principles of the Genetic Algorithm (GA) in 1975 [66],
and they were further analyzed and described in many studies that followed [67]-[69].
The GA is a heuristic learning model based on natural evolution and selective breeding
principles. This model consists of a population of structures, called chromosomes, which
represent candidate solutions to a given problem; the selection mechanism, which chooses
the best members of the population for reproduction, primarily by evaluating the fitness
function of each chromosome; and some genetic operators, which slightly alter the genes
in chromosomes in order to create new chromosomes [68].

For the purpose of software testing or system testing in general, there are two main
application areas of the GA principle: (1) test data generation, and, (2) test paths gen-
eration.

Several studies describe the use of the GA to generate test data [70]-{73]. In this
approach, each chromosome represents a selection of values of all input parameters of the
SUT. The GA then generates a population of chromosomes that satisfies the selected test
coverage criterion [55].

The employment of the GA for test path creation is the most relevant variant to our
research. The individual papers differ in the use of different underlying models of the SUT
(for the white-box testing of the source code, they use the CFG [74], [75], and for the
black-box testing of the SUT processes, they use the Unified Modeling Language (UML)
diagrams [76]). Additionally, they differ in the test coverage criteria that the generated
test paths satisfy.

In path-based testing, Ghiduk uses GA to automatically generate basis test paths
from a graph-based SUT control-flow model [74]. Girgis and Ghiduk make a similar

CHAPTER 2. RELATED WORK 13

proposal in this area [75]. How the GA can be implemented to generate paths in a test
program is explained in other studies |[77]-[79]. At higher levels of testing, GA has been
employed by Sharma et al. to generate test paths in UML activity diagrams modeling
SUT processes and workflows. This proposal allows for utilizing activity diagrams with
parallelism constructs (fork and join) [80].

In their overview study, Hermandi et al. discuss the possible limitations of path-based
testing and challenges of using GA in this field from a more high-level point of view [56].

To effectively achieve Prime-path coverage of a sequence diagram modelling a SUT,
GA is used by Hoseini and Jalili [76]. The principle of the proposed algorithm works as
follows: firstly, a sequence diagram of an SUT is transformed into a control-flow graph
(which is a structure that is, in this study, different to established CFG in DFT); secondly,
prime paths are found in the control-flow graph; lastly, the GA is used to generate an
optimal set of test paths from these prime paths [76]. Even though the results of this
work are promising, generated test paths fulfill the prime path test coverage criterion,
which is unnecessarily strong criterion to solve the problem addressed by our thesis.

Another use of the GA is for basis path testing, a powerful structural testing approach
that employs a vector space and its basis to construct test paths [74]. Ghiduk introduces
a technique that uses a GA to generate a set of test paths for basis path testing [74].
The proposed GA begins with only entry and exit edges in an initial population. The
technique evaluates each chromosome by a fitness function value and selects parents of
the next generation by a roulette wheel method. The crossover operator and mutation are
applied afterward to the individuals chosen for reproduction. A breeding phase follows,
in which an adjacent edge extends each chromosome to represent a complete path in
the future. The last proposed genetic operator is an elitist operator that enhances the
offspring of the current generation by its best member. The algorithm terminates when
a produced set of individuals (paths through a CFG) represents a basis set of paths. The
basis set of paths must consists of independent paths (those paths that never appear as
sub-paths of any other path in the CFG), the set of paths must contain all edges in the
CFG, and every path not contained in the basis set of paths must be constructible by a
linear combination of the paths in this set [74].

Girgis et al. propose their version of the GA that produces test sets that satisfy the
all-uses criterion [75| for DFT. The selection method uses the roulette wheel method, and
when the SUT code contains loops, the proposed algorithm searches for paths using the
ZOT-subset criterion: "Each loop in a program is iterated zero, one, and two times in
execution" [81].

To summarize, in the area of the GA applied in path-based and data-flow testing,

we have not identified a proposal that would address the limited network connectivity

problem, as is the subject of this thesis, for the same reason that we explained in the last

paragraph of Section 2.4.3.

2.4.4 Other Nature-inspired Approaches

A variety of additional algorithms for solving combinatorial and path-based testing prob-
lems also find inspiration from nature. Apart from the ACO and GA discussed in the
sections above, another example from a general class of swarm intelligence algorithms, is
the Partical Swarm Optimization (PSO) algorithm. Generally, in the PSO principle, the
search space exploration imitates the behavior of swarms, such as schools of fish or flocks
of birds. Windisch et al. propose how to perform structural testing using the PSO and
state that this technique is much simpler, easier to implement, and has fewer parameters
that the user has to adjust than with the GA [53].

Another nature-inspired algorithm adapted for the automated generation of test paths
is the Artificial Bee Colony (ABC) search algorithm. It consists of three types of bees,
the scout bees, which search randomly for new food sources; the onlooker bees, which
decide which food source to process based on information from the last category of bees;
the employed bees, which fly to the food sources and determine nectar amounts in these
sources [82]. Lam et al. use the independent and parallel behavior of all types of bees
mentioned earlier to satisfy all independent test path coverage criteria [51]. Compared to
other nature-inspired algorithms, they state that the ABC-inspired algorithm finds the
solution more quickly.

Even fireflies, light-emitting flying bugs, inspired researchers to simulate their behavior
to solve optimization problems. Yang proposed a firefly algorithm based on the following;:
all fireflies are attracted to each other, their attractiveness is proportional to the brightness
of the light they emit (those with a duller light will move toward those with a brighter
light, and those with an equal level of brightness will move randomly), and the brightness
of a firefly is determined by the objective function [83]. Therefore, during each round
of the algorithm, all fireflies move from their initial location through the search space
toward the brighter ones, storing the best solution (the location of the brightest firefly)
in each round. Srivatsava et al. use the FA approach to guide the graph traversal to
create paths that represent test cases in CFGs or state-based models of an SUT [84]. The
authors extend the original approach, defined by Yang [83], with the assumption that the
fireflies lose their intensity of brightness as they move through the graph (instead of using
space absorption coefficient that was employed in the previous versions of the algorithm)
and that the distance between fireflies is computed as the sum of edges between nodes,
instead of the original Cartesian distance in the space. The test path generation starts

by calculating the input model’s objective function, which is followed by the generation

CHAPTER 2. RELATED WORK 15

of fireflies in each of the model’s nodes. The fireflies then traverse the graph led by the
guidance factor (calculated using cyclomatic complexity and the graph adjacency matrix),
looking for the best path. The fireflies can then further prioritize the order of the paths
in the test set by calculating the mean of the brightness of each path.

Internal mechanisms of the slime mold Physarum Polycephalum, a large single-celled
amoeboid organism, is used by Arora et al. [30] as inspiration to generate test scenar-
ios for the concurrent sections in the UML activity diagram. Using statistical analysis,
the authors demonstrate that the proposed Amoeboid Organism Algorithm approach is
better than the existing ACO and GA approaches. This choice is made because of the
redundancies in those algorithms when traversing the search space, leading to savings in
the time needed to generate the set of test cases. On the other hand, there aren’t any
findings on the quality of the generated paths through the models in the paper. Also, it
is unclear what leads the agent through the traversal of the search space. Hence, it is

difficult to evaluate how this method can be used in relation to the subject of this thesis.

While analyzing all the path-based testing algorithms mentioned in this section, we
were not able to identify any that directly addressed the problem we introduce in Section
4 and define formally in Section 4.1.

Algorithms that can be utilized to solve our problem are those that accept the SUT
model G we define in this thesis (see Section 4.1), or its variant, based on a directed
graph and a set of test requirements. Some proposals are given by Li et al. [13], namely
Brute force, Prefix-graph-based, or Set Covering algorithms. In this thesis, we utilize
the Set Covering algorithm and accompany it with a particular procedure to prepare test

requirements, as we present in Section 5.2.

2.5 Alternative Techniques for Testing IoT System Func-

tionality with a Limited Network Connectivity

The research community approaches the testing of [oT systems from several perspectives.
From the test organization perspective, Tan and Cheng propose a division according to
test levels: unit tests, integration tests, system tests, and acceptance tests [85]. Another
perspective present Murad et al., who divide it into usability tests, reliability and scala-
bility tests, compatibility tests, security tests, data integrity tests, and performance tests
[86]. Because these test levels are inspired by the widely researched area of software
testing, they often lack IoT specificity [85], [86].

However, there are some exceptions in the literature. As well as an overview of existing

tools for testing the IoT systems, Dias et al. introduce the loT-specific division of testing

activities into the edge testing, fog testing, and cloud testing categories. From their
perspective, edge testing covers testing the low-level parts of the IoT system. At the
same time, fog testing spans the middle layer of the IoT system, network connection, and
security. Lastly, cloud testing addresses the cloud perspective of the IoT system, meaning
the scalability and dynamic configuration [87].

Focusing on network connectivity testing specifically, Muthiah and Venkatasubrama-
nian introduce the term “connectivity testing” for this purpose [88]. The need to perform
these connectivity tests is mentioned, for example, by Murad et al. in their example from
the healthcare industry [86]. The same term is used by Sirshar et al. in their preprint
about software quality assurance testing methodologies in IoT [89]. Additionally, Es-
quiagola et al. perform connectivity tests on their IoT platform [90].

Although insufficient attention has been paid to limited network connectivity testing
focusing on processes in IoT systems, some alternatives exist. The alternatives mainly
focus on lower levels of an SUT, typically on a network level [91]-[93]. The most frequently
explored topic in existing studies is Quality of Service (QoS) testing [5], [92], [94], [95].

In 2017, White et al. analyzed 162 research articles to carry out a systematic mapping
study on state-of-the-art QoS approaches in IoT [92]. The study found that the most
researched layers of the IoT infrastructure were the Open Systems Interconnection (OSI)
model’s physical, link, and network layers up to that year. On the other hand, the
deployment, middleware, and cloud layers lacked further research. However, this research
concentrated on individual layers of the IoT system infrastructure and didn’t consider the
high-level process viewpoint of the system.

Another study in this direction was done by Rudes et al. to present a concrete example
of QoS assurance for TIoT systems [91]. The study involved the testing of a small sensor
network prototype that shares its data, over the internet, with a server located in a labo-
ratory. However, the tests were aimed only at the network communication quality and not
the influence on the overall process. Matz et al. provide an analysis of quality assurance
for network communication between [oT systems on the physical and application layers
[94]. The authors measured the quality of a Narrowband-IoT technology that provides
energy-efficient and long-range network access to IoT devices using the cellular network,
e.g., Long Term Evolution (LTE) or 5G in the future. Kim et al. propose a service-based
automated IoT testing framework to resolve constraints regarding coordination, costs,
and scalability issues of traditional software testing [96]. This framework also performs
remote distributed interoperability testing, scalable and automated conformance testing,
and semantic testing. However, the set of test cases that run on the SUT is predefined,

making the exhaustive process of testing under a limited network connectivity impossible

[96].

CHAPTER 2. RELATED WORK 17

Analyzed studies in this area typically assess network reliability and related topics.
Higher levels of SUT functionality (functional correctness from the system user’s viewpoint
or flawless integration) are not tested. Hence, the techniques for testing IoT functionality
are underexplored from the perspective of system behavior. No specific path-based, data-
flow, or SBST technique directly addressed the given goals of this thesis.

A systematic mapping study on the aspects of quality assurance in IoT systems that
our lab recently conducted also confirms this conclusion [5]. The study found that one of
the areas not sufficiently covered in the literature and, therefore, worth exploring is the
development of specific test design techniques to test IoT systems with a limited network

connection, which is the issue addressed by this thesis.

2.6 Summary of Related Work and Motivation

Although there is no unified definition of which types of systems the IoT family includes,
all these systems employ the Internet (or a closed data network) as the connecting element
essential for the functionality of the individual components of a given system. Upon
examining the use cases of various [oT systems, wireless networks were primarily applied
to connect these components. Owing to its nature, a wireless network can experience
connection outages. This occurs if a mobile device is used in a location with problematic
network coverage (e.g., uninhabited areas, tunnels, subways), or in case of an energy
shortage in the infrastructure, or defects or damage in the hardware components.

In all such systems and primarily those applied in the critical infrastructure, manufac-
turers should ensure the appropriate functioning of the system, even in case of a network
outage and restoration. As analyzed and explained in this section, this research area
requires further attention.

There are several reasons to approach the limited network connectivity tests from a
process perspective, as we do in this thesis. Firstly, owing to the potential model sizes and
versions of the individual components of the IoT system that can be combined, the number
of test cases can be enormous [97]. Second, the testers of smart devices should test these
devices in the real world outside the lab, where Internet connectivity may be intermittent
[98]. Any test performed in this manner requires considerable time and resources, which
favors the MBT approach because it can automatically generate a precisely optimized set
of test cases containing only the most significant test cases. Third, the testing process of
[oT systems should be automated to reduce testing costs and enable faster execution of
these tests [99], [100]. Thus, the process perspective provides a highly insightful basis for
this approach.

To model the processes of an IoT system, the initial models (e.g., UML activity di-

agrams) can be transformed into directed-graph-based models with specific properties.
A test case is a path through this graph-based model, and as discussed in Section 2.2,
path-based testing techniques are generally employed to generate these types of test cases.

However, the existing path-based testing methods do not address the specificity of the
testing problem described in Section 4.1. This problem model contains several Limited
Connectivity Zone (LCZ)s, each of which represents a subsystem undergoing network
disruption. This LCZ is connected to the stable components of the IoT system through
the LCZ IN and LCZ OUT nodes (defined in Section 4.1), whose pairs must be present in
the test cases. More precisely, to visit the LCZ IN and OUT node pair on the borders of
LCZ z using a test case t, the LCZ IN node must be placed before the LCZ OUT node in
t. Furthermore, the path between the LCZ IN and LCZ OUT nodes in ¢ must not exit z.
This rule is further described in Section 4.2, where we formalize the test coverage criteria.

This specific condition was not observed in the studied path-based testing techniques.
The only exception in the field that can be utilized is the test requirement concept,
which was employed in this project. As explained further in Section 5.2, we transformed
FEachBorderOnce and AllBorderCombinations coverage criteria (defined in Section 4.2) to
test these requirements and used the algorithm proposed by Li et al. [13] to generate a
set of test cases satisfying these test requirements.

However, this is only one possible approach. In this thesis, we explored more alterna-
tives that can outperform an approach based on the test requirement concept.

In addition to the analysis of the existing literature, we should consider an indus-
trial perspective for motivation. Accordingly, we received positive feedback from several
companies with which our lab has been cooperating during the last four years, namely,
Skoda Auto, Rockwell, Siemens, and Electrolux. After explaining the principle of the
technique, all testing specialists from these companies confirmed that the proposed ap-
proach is reasonable from an industrial tester’s viewpoint and encouraged us to pursue

the development and implementation of this technique.

Chapter 3

Thesis Statement and Research

Questions

The research statement for this PhD project is as follows:

For a specific problem of testing the functionality of an IoT system under limited
network connectivity, the current established path-based testing techniques do not suffice,
and thus, a specialized technique has to be developed. Such a technique will produce a set
of test cases effective in terms of the testing effort required to identify relevant defects in

the system under test.

The research questions for the PhD project are inquired as follows:

e RQ 1: How to model the problem of testing the functionality of an [oT system under

limited network connectivity such that a path-based testing approach is utilized?

e RQ 2: Which existing approaches and algorithms can be utilized or partially utilized
to solve the defined problem?

e RQ 3: Which new algorithms developed specially for the discussed problem can
generate a set of test cases that is effective in the sense of the testing effort required

to find relevant defects in a system under test?

e RQ 4: Considering the nature of the path-based testing discipline, is it possible to
formulate the singularly best-performing algorithm, or would a strategy based on a

combination of several algorithms deliver the best solution?

In this thesis, RQ 1 is addressed in Sections 4.1 and 4.2. The proposed model is

further verified through a set of experiments, as described in Section 8. RQ 2 is answered

19

by analyzing the existing algorithms reviewed in Section 2 and summarized in Section 2.6.
The development and proposal of an algorithm based on the established test requirements
concept is elaborated in Section 5.2. Notably, this algorithm serves as a baseline for
comparison with the proposed algorithms to obtain the first answer of RQ 3. Thereafter,
three additional algorithms are proposed in Sections 4.4.1, 4.4.2, and 4.4.3, which were
combined in the portfolio strategy presented in Section 6. The algorithms were executed
on the set of SUT models described in Section 7 and evaluated using criteria introduced
in Sections 4.3, 5.1, and 7.3. The experimental results are discussed in Section 8 and
further discussed in Section 9. Finally, based on the experimental results, an answer to
RQ 4 is provided in Section 9.

Chapter 4

Proposed Limited Network

Connectivity Technique

Important requirements for the testing process are to perform it cost-optimally and with a
sufficient level of abstraction on concrete subsystems, protocols, and platforms. Therefore,
to satisfy these requirements, we chose to concentrate on the process viewpoint of IoT
systems behaving under a limited network connectivity, and we propose a process testing
technique, called LNCT.

It is a black-box testing technique, and its output is a set of test cases that represent
end-to-end paths through the SUT processes (hence path-based testing). Such a technique
is useful during system testing in the later phases of the system development life cycle.
But, it can be used even in integration or regression testing of the SUT.

To verify the functionality of an IoT system affected by limited network connectivity
or connectivity outages, test designers must construct a set of test scenarios addressing
this problem. In this thesis, the test design is primarily focused on testing the following
two principal situations:

1) In a particular part of a process handled by the SUT, the network connectivity is
interrupted (or limited to an extent that affects the functionality of the SUT). In such a

case, functional testing should be conducted on the SUT for the following scenarios!:

1. When a subsystem of the SUT is isolated from network connectivity for a certain
period as it collects data, are these data transmitted and correctly stored offline until

the network connectivity is restored, or do the collected data become irretrievable?

2. A SUT subsystem accepts signals, e.g., commands or application programming in-

terface (API) calls, from other devices or subsystems, and this receiving subsystem

!The given situations are only examples, and the list is not exhaustive but may include certain test
situations that are not relevant to all types of IoT systems

21

is temporarily disconnected from the network. Are the other signal-transmitting
devices notified regarding the missing (offline) subsystem failing to respond to these

signals?

3. Is a SUT user notified regarding the limited functionality caused by network con-

nectivity outage?

2) The network connectivity is restored after an outage. At the instant the network

connectivity is recovered, the following typical situations require testing:

1. If the SUT data must be processed transactionally, is this transactionality main-
tained even in a network connectivity outage? Specifically, will the affected transac-
tions be discarded in a deterministic manner or completed via the available caches
upon recovering the connection? Are the cached transactions finished correctly,

including the logical order of their steps?

2. When SUT devices, modules, or subsystems cache the data during the connectivity
outage, are these cached data accurately transmitted to the receiving SUT modules
after the network connectivity is restored? Although this transmission might affect
the responsiveness or performance of the SUT, is such a temporary fallout acceptable

for the users and system safety?

3. Are the data stored and processed by the SUT consistent (their internal structure
and content not malformed) after network restoration and transmission of the locally

stored data or closure of the transactions?

4. Is a user of the SUT notified intently that the erstwhile disabled functionality is

available again?

In this thesis, we approached this problem from the perspective of process (or path-
based) testing. We aimed to execute a process flow in an SUT to learn the behavior
of the process as it is affected by a network connectivity outage or limitation. To test
the outlined situations, we must construct path-based test cases in which we follow the
events when the network connectivity is interrupted (or goes to be limited) by the events
in which the connectivity is restored. An exemplary case is illustrated in Figure 4.1.

A sample fictional [oT system composed of three subsystems (devices and backend sys-
tems) is presented in Figure 4.1, wherein Subsystems A and C are IoT devices: Subsystem
A is connected to a stable network, whereas Subsystem C is a mobile device operating in
an area under limited network connectivity (e.g., rural, maritime, or subterranean areas).

Subsystem B is the backend connected to a stable network.

CHAPTER 4. PROPOSED LIMITED NETWORK CONNECTIVITY TECHNIQUE23

:
—Y

Function1 | = = =@ =@ = =@ =@ = = = = = = = = = = = = = = = = == === == - - == I

! Subsystem C I

JE 2 '} |
1

Function 2 Function 4 H Function 6 H Function 7 ’ :
[’y 1
N R |

Function 9 H Function 10 J

A

Subsystgm B

Function 5

Figure 4.1: Initial example of an SUT affected by a network connectivity outage in its
submodule and a path-based test case enabling the test of the SUT behavior in such
situations.

In the test, we assumed that Subsystem C operates even without network connectivity.
We used various process flow variants to learn the system behavior under such restrictions.
In the current example, Functions 4, 6, and 7, and Decision 2 are affected by network
connectivity outages and depicted with the red border. To test the outlined situation, we
exercised a transition from Function 3 to Decision 2, Decision 2 to Function 2, Function
5 to Function 6, and Function 7 to Function 10 (these transitions are depicted in red in
Figure 4.1). In the test scenario presented in Figure 4.1 (bold arrows) as an example, the
event is sequenced till the network connectivity is interrupted (or limited, transitioning
from Function 3 to Decision 2) along with the record of the event in which connectivity
is restored (transitioning from Function 7 to Function 10).

Using an SUT model, various test paths sequencing the events of network connectivity
outage with the events of connectivity restoration can be identified. However, a significant
number of test cases would not be optimal from the perspective of the overall testing
expenditure. Thus, our goal is to generate cost-effective test sequences to address the

limited network connectivity problem.

4.1 Model of the Problem

The SUT process, which can be affected impacted by a possible network connection
outage (CO), for which we create the test cases, is abstracted as a directed graph G =
(N, E,ng, N,), where N # () represents a finite set of nodes, and E denotes a nonempty
set of directed edges, F = {(n,m) | (n,m) € N x N is an ordered pair of nodes }. The
node ng € N is the initial/start node of the graph G (with no incoming edges), and N,
defines a nonempty set of end nodes of graph G, N, = {n. | n. € N has no outgoing
edge}. In particular, the nodes serve as abstractions of the SUT actions, functions, or
decision points, and the edges represent the transitions between them in the process flow.
In the proposed method, G' does not permit parallel edges.

Test case t is a sequence of nodes ny, ns, ..., n,, with a sequence of edges e, s, ..., €, _1,
where e; = (n;,n;11), e; € E. Test case t starts with start node ns (n; = n,) and ends
with end node (n, € N.). Test set T is a set of test cases. Alternatively, we used the
term test path for the test case in the text.

Edge connection outage probability (COP) denoted by cop(e) is defined for
e € I/ and indicates a percentage representing the abstracted probability of a connection
outage in this edge. If particular value of cop(e) is defined, then e is a transition affected
by the possible limited network connectivity in the IoT system.

Threshold COP denoted by threshold represents the threshold connection outage
probability, for which the test set T" is created. By setting threshold to n, we assume
that all edges with a COP greater than or equal to n will be affected by a hypothetical
network connectivity outage.

Furthermore, we introduce the concept of LCZ. LCZ edge is an edge e € E for which
cop(e) > threshold and Non-LCZ edge denotes an edge e € E with cop(e) < threshold.
LCZ L represents a coherent subgraph of G containing only the LCZ edges. For a given
threshold, G can contain more than one LCZ. LCZs of G are denoted by L(G, threshold).

IN node of LCZ L denotes a node n satisfying one of the following conditions:

1. n =ng and n has an outgoing edge that is an LCZ edge of L.

2. n has an outgoing edge that is an edge of L, and n has an incoming edge that is not
an LCZ edge of L.

in(L) C N denotes all IN nodes of L and in(G, threshold) C N denotes all IN nodes of
all LCZs L(G,threshold).
OUT node of LCZ L is a node n that satisfies one of the following conditions:

1. n € N, and n has an incoming edge that is an edge of L.

CHAPTER 4. PROPOSED LIMITED NETWORK CONNECTIVITY TECHNIQUE?25

2. n has an incoming edge that is an LCZ edge of L, and n has an outgoing edge that
is not an LCZ edge of L.

out(L) C N denotes all OUT nodes of L and out(G,threshold) C N denotes all OUT
nodes of all LCZs L(G, threshold).

Border node of LCZ is either the IN or OUT node of LCZ

Using the fictional IoT system outlined in Figure 4.1 as an example, these concepts
are illustrated in Figure 4.2. In the example, N, = {ni1,ni6}, L contains ns, ng, nz,
and ng, in(L) = {ns,n7} and out(L) = {ns,ng}. The sample test case can be t =

ng, Ny, N2, N3, Ny, N5, N7, Ng, N15, N16-

ny € in(L) H ng € out(L)

i

n15

n1g € Ne

Figure 4.2: Illustration of defined model elements in exemplary IoT system.

The test case generation problem is stated as follows: Given the SUT model G,
threshold, and test coverage criterion C, determine a test set T' satisfying C. The test

coverage criteria are described in Section 4.2.

4.1.1 Problem Model Transformation Guidelines

We summarize the transformation process of the original SUT model to the format we
propose in the following list of steps. On the input of the transformation is SUT process

model, threshold value, and test coverage criterion C.

1. Locate the start node in the process model; if there is no dedicated start node,

create a new node and make it enter all nodes that have no incoming edges.

2. Make all the nodes in the process model reach a certain end node. If there is a node
that doesn’t reach it, create a new node and insert it into the model to the place

where the modeled process is terminated.

3. Make all transitions in the process model to be directed edges from a single node to
a different node. If there are loops in the graph, transform them with the possible

help of the insertion of some artificial nodes.

4. If there are parallel edges in the graph, transform them. It is possible to insert an

artificial node between the start and end nodes of the parallel transitions.

5. Estimate the connection outage probabilities of all the transitions in the SUT model

and insert this value to the dedicated edge in the model.

6. Based on the connection outage probabilities of the transitions, locate the IN nodes
and OUT nodes in the model by following the conditions defined in the previous
section. The limited connectivity zones, comprised of the IN nodes, OUT nodes,
and inner nodes (for which all the incoming and outgoing edges have cop(e) >
threshold), are then located in the model.

After the last step of the transformation, the model contains all the information and
is in the correct state to be inputted together with threshold and C to the algorithms we

propose in this thesis for the test set generation.

4.1.2 Problem Model Transformation Example

We demonstrate the model transformation process on the following system that we co-
operate on. It is a sensor network aimed to reduce fatal casualties in defense operations,
called Digital Triage Assistant (DTA). In the original high-level diagram depicted in Fig-
ure 4.3, we model the basic function of the DTA system in the defense operation, during
which soldiers wear it, and it constantly communicates with the command center and
shows the health status, position, and other data regarding the soldiers.

Individual processes are identified and modeled in the following stages of the analysis.
A model of such a process is depicted in Figure 4.4.

We then transform the process model into the model using the elements defined in this
chapter. Based on the analysis, we assign the COP levels, which are then used to identify
the LCZs and border nodes. In Figure 4.5, we present the visualization of such a model;
in this case, it is the transformed model from Figure 4.4. In the figure, there are two
LCZs visualized by brown transitions of the LCZ edges, nodes with orange backgrounds
of the border nodes, and nodes with white backgrounds and brown circles of the LCZ

inner nodes.

CHAPTER 4. PROPOSED LIMITED NETWORK CONNECTIVITY TECHNIQUE27

Data network Command center

Unit in the field

Own LPWAN for combat situations
GSM / WiFi for civilian operations

: i
! 1
| 1
' |
Gearlf -=-=-=-=--o--o = m e e e mmm—————————— i ————— > .
F : ! N Data collection
1 1
' |
' |

Backed server

and storage

""" >| api 1

F ------- bl e T To--=> Dashboard

Soldiers’ position
and MLS on map

Figure 4.3: High-level view at the DTA functionality in a defense operation.

Put packet to cache

Add data to packet

data received

. . Switch to stealth
Register device
mode
stealth mode

turn off standard mode
A

|

Initial check >

Send cached packets

A

data received

packets in cache

Add data to packet |€ ‘ packets not cached /\ sW|tchnt1c;3;andard

<
Put packet to cache
not connected
4><>connected Send packet

Figure 4.4: UML diagram of DTA with stealth mode process.

.) fwitch tp
re ce B s 3 colect datghl 8
g @ staalth mgde

collgct datajpit 2

»

Figure 4.5: An LNCT example problem model of a DTA with stealth mode process.

CHAPTER 4. PROPOSED LIMITED NETWORK CONNECTIVITY TECHNIQUE29
4.2 Test Coverage Criteria

For the limited connectivity problem discussed in this thesis, several test coverage crite-
ria C can be defined, and here, we defined four test coverage criteria: EachBorderOnce,
AllBorderCombinations, ComprehensiveFEachBorderOnce, and ComprehensiveAllBorder-
Combinations. These test coverage criteria differ according to the number of test case
steps and the method of test case construction.

To satisfy the FachBorderOnce criterion, the test set 7" must contain each node
of in(G, threshold) and out(G,threshold). Furthermore, for all L € L(G,threshold), if
t € T contains a node n;, € in(L), then this node must be followed by a node n,,; € out(L)
later in the test path ¢ but not necessarily immediately. The proposed technique allows
n;n to be equal to n,,:, because in certain situations, the LCZ may be entered and exited
through the same node. Practically, this test coverage criterion requires that the test
cases visit all the LCZ border nodes at least once, regardless of the path for entering the
IN and exiting the OUT nodes.

To satisfy the AllBorderCombinations criterion, for each L € L(G,threshold),
the test set 7" must contain each combination of a node n;, € in(L) and a node from
Nouwt € out(L), for which a path exists from n;, to n,, inside the L. Furthermore, for all
L € L(G,threshold), ift € T contains a node n;, € in(L), then this node must be followed
by node ny,; € out(L) later in the test path ¢, but not necessarily immediately, to satisfy
this coverage criterion. Note that n;, can be equal to n,,;. Informally, this test coverage
criterion requires that the test cases must traverse through all possible combinations of
the IN and OUT nodes of the LCZ borders for which there exists a path inside the LCZ
from the IN node to an OUT node, regardless of the edges followed to enter the IN and
exit the OUT nodes in the test case.

To visit the nodes susceptible to network outage using more possible combinations of
paths beyond the LCZs, we define two additional test coverage criteria suitable for testing
the more critical components of the SUT processes.

To satisfy ComprehensiveFEachBorderOnce, T must satisfy FachBorderOnce, and
the following conditions must be satisfied: each n;, € in(G,threshold) must be entered
by a Non-LCZ edge in a t € T and each n,, € out(G,threshold) must be exited by a
Non-LCZ edgeinateT.

To satisfy the Comprehensive AllBorderCombinations, for each L € L(G,threshold),
the test set 7' must contain all combinations of a node n;, € in(L) and a node from
Nowt € out(L) for which a path exists from n;, to 1y, within L. Furthermore, n;, must
be entered by a Non-LCZ edge in a t € T" and n,,; must be exited by a Non-LCZ edge in
this t. Furthermore, for all L € £(G,threshold), if t € T contains node n;, € in(L), then
this node must be (later in the test path ¢ but not necessarily immediately) followed by

node ny,; € out(L) to satisfy this coverage criterion. Note that n;, can be equal to n4y.

These novel test coverage criteria are applicable in various situations based on the crit-
icality of the SUT and the available testing resources. Informally, the FachBorderOnce
criterion is the weakest and results in the lowest number of test steps in T. The All-
BorderCombinations coverage criterion cover all possible combinations of the LCZ border
nodes. Therefore, it induces more rigorous testing and a greater number of test steps in
T. The "Comprehensive" variant of both criteria, ComprehensiveEachBorderOnce and
Comprehensive AllBorderCombinations, further increase the potential number of test steps

in T, as they require exiting an LCZ before visiting another LCZ IN node in a test case.

4.3 Test Set Evaluation Criteria

To evaluate the test set cost or quality, several test-set evaluation criteria have been
discussed in the literature for path-based testing [13], [101], [102]. For the current research
problem discussed in this thesis, the options defined in Table 4.1 were employed as test

set evaluation criteria &£.

Evaluation criterion Description

|T| Number of test cases in test set T
7|

(T)=> |t t;eT
i=1

Total length of test set T" measured in
number of edges.

Length dispersion of the test cases in
Q h T db dard
Zﬂtl B H)Q the test set I, expressed by a standar
— ’ deviation of test case lengths; the test
s(T) = Z_lTTa 7| > 1 case length is measured in the number
of edges.

Ratio of unique edges in test set 7' to

u_edges(T) - 100% the total number of edges in test set T',
B I(T) ’ where u_ edges(T) denotes the number
of unique edges in test set T

Ratio of the number of border nodes in
test set T" to the total number of nodes
_ b_nodes(T) 100% in test set 7' (which is [(T)+|T|), where
U(T) +|T ’ b_nodes(T) denotes the number of bor-
der nodes in test set T for all LCZs of
G.

Table 4.1: Test case evaluation criteria £.

From these criteria, the total length of the test set 7', [(T") served as a proxy for the

CHAPTER 4. PROPOSED LIMITED NETWORK CONNECTIVITY TECHNIQUE31

effort required to conduct the tests. The count of test cases in a test set T', T, is an
auxiliary indicator for evaluating the results of the individual algorithms. A lower value
of I(T') (for T satisfying the given test coverage criterion) indicated more effective test
cases from the standpoint of testing effort. Although |T'| can be interpreted in the same
manner, |T'| must be considered in the context of [(7") and an isolated value of |T'| does
not directly express the effort required to execute the tests.

The length dispersion of a test set T' (s(7T')) is vital for preventing excessively long and
short test cases. Generally, test analysts consider lengthy test cases impractical because
the probability that the test case is interrupted by a defect and the remainder of the
test cases cannot be completed increases with its length. Consequently, as a higher s(7')
implies higher variability in the length of the test case, a lower value of s(7") implies a
more suitable test set.

Criterion U(T) provides additional information on the effectiveness of the test cases,
and its goal is to express a (potentially ineffective) repetition of G edges in the test cases.
A higher U(T') value indicates better 7.

Similarly, B(T") expresses the effectiveness of the test set for visiting the LCZ border
nodes in relation to the total number of G' nodes visited during the tests, i.e., a higher
value of B(T) indicates better T.

In the present experiments, we applied the defined £ to evaluate the properties of T’

generated by the algorithms for various SUT models.

4.4 Proposed Algorithms

In this thesis, we present three algorithms that generate T' from G for the LNCT technique:

1. Shortest Paths Composition (SPC) is based on the principle of determining
the shortest path between the nodes identified in G and connecting them in the test

cases (described in Section 4.4.1);

2. Ant Colony Optimization-based algorithm (ANT) employs the ant-colony

optimization principle to find the test cases (described in Section 4.4.2);

3. Adapted Genetic Algorithm-based paths generation (AGA) employs the

principle of genetic algorithm to derive the test cases (described in Section 4.4.3).

4.4.1 Shortest Paths Composition Algorithm

The main routine of the SPC is described in Algorithm 1, which accepts G, threshold,

and C as inputs and produces T as its output, while maintaining a set of unused LCZ IN

nodes U;, and a set of unused LCZ OUT nodes U,,;. The Algorithm 1 starts by finding
all shortest paths between in(L) and out(L) inside all LCZ L € L(G,threshold) of given
G. They are generated by a subroutine FindPathsInLCZs and stored to P.

The subroutine FindPathsInLCZs, described in Algorithm 2, works on the breadth-
first search principle starting in out(L) nodes of each LCZ L € L(G,threshold). Nodes to
traverse are stored in queue (). For all explored nodes, the distance from a particular node
Nowt € out(L) is stored. In the algorithm, this distance is denoted as distance(n,ns).
Then, for each L, paths from each in(L) with the shortest distance to out(L) are selected
as an output, denoted as P. In Algorithm 2, parents(n) denotes the set of parents of
node n.

The main routine of Algorithm 1 continues by exploring G using the breadth-first
search principle. When this search reaches a start node of any path p € P, the exploration
history stored in potential previous TC' step is expanded by nodes in p, and the end
node of p is added to the queue @) that contain nodes, from which further exploration of
the graph is conducted.

The selection of path p € P, which is going to be used in the currently constructed
test case, is specified in procedure GetNextShortestPathInLCZ (Algorithm 3). This
procedure also manages the removal of p from P according to the selected coverage crite-
rion C. For ComprehensiveAllBorderCombinations this procedure just removes p from P.
For AllBorderCombinations or FachBorderOnce, this procedure removes all paths p’ € P
that are sub-paths of p. For the FachBorderOnce and ComprehensiveFEachBorderOnce
test coverage criteria, all paths p/, ending with already-used LCZ OUT nodes (nodes that
are not in U,,), are removed from P.

Then, the exploration of G continues searching for another start node of different path
q € P. When an end node of GG is reached during the exploration, a test case is composed
based on the exploration history and added to a set of test cases T that the SPC' routine

returns as its result.

CHAPTER 4. PROPOSED LIMITED NETWORK CONNECTIVITY TECHNIQUE33

Algorithm 1: SPC(G, threshold,C): Combine shortest paths between the start
node and some of the end nodes through the the LCZs in the test cases.

Input : SUT model G, threshold, and coverage criteria C

Output: set of test cases T
1 T < 0; Uy, < in(G, threshold); Uy < out(G, threshold)
2 P+ FindPathsInLCZs(G,threshold) ; > Vp € P must be contained in T
3 while P # () do

4 PUT ns € G to Q ; > () is a queue of nodes to traverse
5 set path as empty ; > path is a sequence of consecutive nodes
6 while () is not empty do
7 n < POP from @ ; > n is a currently traversed node
8 if n € in(G) and P contains a path that starts in n then
9 p < GetNextShortestPathInLCZ(C, P,n, Uiy, Usy)
10 P+ P\ {p}
11 o < the last node of p ; > o € out(G,threshold)
12 for each n, € p do
13 potential_previous_TC_step(np) <—pa7’ent(np) ; > Save parent
- child connection
14 end
15 SET @ as empty ; > Delete all elements in ()
16 PUT o to @
17 end
18 else if n € N, then
19 t is a new path of nodes; Add n to ¢
20 temp < n
21 while potential _previous TC _step(temp) has been set do
22 add potential previous TC step(temp) at the beginning of ¢
23 temp < potential _previous TC step(temp)
24 end
25 T+ TuUt
26 end
27 else
28 for each d € descendants(n) do
29 potential _previous TC step(d) < n
30 end
31 end
32 end
33 end

34 return 7T

Algorithm 2: FindPathsInLCZs(G,threshold): Find all relevant shortest
paths inside LCZs present in the SUT model G.

Input : SUT model G, threshold
Output: set of shortest paths between in(L) and out(L) inside the LCZ L for all
L € L(G,threshold), denoted as P

1 P+ 0

2 for each LCZ L € L(G,threshold) do

3 for each nyy, € out(L) do

4 SET () as empty ; > () is a queue of nodes to traverse
5 PUT ngyyu to Q

6 for each x in L except ny, do

7 distance(nyyt, T) < 00 ; > distance equals to number of nodes

of a path from n,; to

8 end

9 while () is not empty do

10 n < POP from @

11 for each p € parents(n) do

12 if distance(ngu, p) > distance(nyy, n) then

13 distance(ngys, p) <— distance(ngy,n) + 1

14 PUT p to @

15 end

16 end

17 end

18 for each n;, € in(L) do

19 SET path as empty ; > path is a sequence of consecutive nodes
20 4= Ny, 3 > n is a currently traversed node
21 while n # n,,; do

22 n < x € L such that distance(n,x) is minimal

23 ADD n at the end of path

24 end

25 ADD n at the end of path

26 if |path| > 1 then

27 ‘ P < PUpath

28 end

29 end

30 end
31 end

32 return P

CHAPTER 4. PROPOSED LIMITED NETWORK CONNECTIVITY TECHNIQUE35

Algorithm 3: GetNextShortestPathInLCZ(C, P,nn, Uin, Usyt): Return the

shortest path inside LCZ from n;, with respect to given coverage criterion C.
Input : a coverage criteria C, set of shortest paths P, an LCZ IN node n;,, set

of unused LCZ IN nodes Uj;,, and set of unused LCZ OUT nodes U,
Output: next shortest path p

Nout < a node to which exists a path from n;, present in P

[uny

2 if C = FachBorderOnce or C = ComprehensiveFEachBorderOnce then

3 if nowt & Usue and P contains a path that ends in an n! , € Uy, then
4 ‘ Nout <= N,

5 end

6 end

p < a path from n;, to ng, that is present in P

P« P\ {p}
if C = AllBorderCombinations or C = FachBorderOnce then

10 for each n € p do

BN

03]

©

11 for each path p’ from n that is present in P do
12 n! . < the end node of path p/

13 if n.,, follows n in path p then

14 ‘ P+ P\ {p'}

15 end

16 end

17 end

18 end

19 if C = FachBorderOnce or C = Comprehensive EachBorderOnce then
20 ‘ P+ P\ {p|pe€ P and p starts in n;, and leads to an n, ¢ U, }
21 end

22 return p

4.4.2 Ant Colony Optimization-based Algorithm

The ANT algorithm is inspired by the Ant Colony Optimization (ACO) algorithm that we
already introduced in Section 2.4.2. The main routine of ANT is described in Algorithm
4, which accepts G, threshold, and C as inputs and produces T as its output. The
following section presents the algorithm variables, their initiation, the algorithm steps,
and procedures, e.g., how to obtain the desirability and pheromone levels to guide the

traversal of G and how to choose the ant that found the best path.

Constant | Value
o 1
15} 3
NC 15
p 0.5
m 30
c 1.0

Table 4.2: The values of the constants for the ANT algorithm.

Algorithm Variables and Constants

There are two important variables that influence the ant’s traversal of G. Namely, 7;;
represents the pheromone intensity of edge (4,7) € E, and H|[(i, j)] stores the desirability
of edge (i,7) € E.

The following variables and constants are employed in the ANT algorithm:

e a: A constant representing the weight of the pheromone level in the calculation.

B: A constant representing the weight of the desirability level in the calculation.

NC': A constant representing the number of repetitions of an ant’s search for a path.

p: A coeflicient representing the level of pheromone evaporation after each iteration

of the ant’s search for a path.

m: A constant representing the number of ants used for the graph exploration.

7;;: The pheromone intensity of edge (i,j) € E.
e HI(i,7)]: The desirability of edge (i,7) € E.
e c: The initial level of the 7;; variable.

The values of the constants specified in Table 4.2 were found after extensive fine-tuning

during the experiments, which yielded the best results for the ANT algorithm.

Algorithm Initiation

The ANT’s main routine is specified in Algorithm 4. It accepts G, threshold, and C as
inputs and produces 7' as its output. In the initial step, the algorithm creates a mapping
U that contains a set of reachable LCZ OUT nodes U C out(L) for every node n C in(L).
This mapping is constructed for all LCZs L. In the Algorithm 4, LCZ OUT node r C U

reachable from node n means that a path from n to r exists. The method for generating

CHAPTER 4. PROPOSED LIMITED NETWORK CONNECTIVITY TECHNIQUE37

traverses all L € L(G, threshold) that begin in n;, € in(L) nodes and end in n4,; € out(L)
nodes, using the breadth-first search (BFS) algorithm.

The ANT routine continues by calling the ANTCore procedure (see Algorithm 5)
repeatedly. Among its outputs, it produces a path P that is stored into a set of test cases
T, and LCZ border node pairs stored in B;, and B,,; that are then removed from the
mapping U. Algorithm 4 continues until the mapping U is not empty.

In the ANT algorithm, the term nodes covered by ants means that a particular ant
traversed a pair of LCZ IN and LCZ OUT nodes in a sequence corresponding to selected

test coverage criterion C (see Section 4.2).

Algorithm 4: ANT(G,threshold,C): The main routine of the ANT Algorithm

that explores G and maintains a mapping of covered LCZ border nodes U.

Input : SUT model G, threshold, coverage criterion C,
Output: Set of test cases T’
1 U is a mapping where a key is an LCZ IN node k € in(G, threshold) and a value
is a set of LCZ OUT nodes from out(G, threshold) that are reachable from k in
G. In U, an empty set can be stored for a particular key.
2 Initiate U for G and threshold.
3T+ 0
4 while U is not empty do

5 (P, Bin, Bout) < ANTCore(G,threshold,C,U) ; > Find the best path P
and covered LCZ border nodes B, and B,

6 T+ TU{P}; > Add path P to the set of test cases

7 for each n;, € B;, do

8 for nyyu € By do

9 ‘ REMOVE ny; from U[n;,| ; > Covered LCZ OUT node ny:

10 end

11 end

12 for each n;, € B, do

13 if U[n;,] = 0 then

14 ‘ REMOVE key n;, from U ; > Covered LCZ IN node n;,

15 end

16 end

17 end

18 return T

The ANTCore Algorithm

The ANTCore procedure, described in Algorithm 5, manages the traversal of the ants
through G. The ants are led by a combination of desirabilities and pheromone disposal
on the edges of G.

First, the algorithm creates the list of ants; this list has length m. Second, the mapping
of desirabilities D is initialized. For each node x € N, this mapping D returns which
LCZ border nodes are reachable from z (the mapping D returns a set (Ry,, Rou), where
reachable LCZ IN nodes are stored in set R;, and reachable LCZ OUT nodes are stored
in set Royut)-

The next step is obtaining the desirability levels, specified in the FindReachable BN s
procedure (Algorithm 6). This procedure traverses G from each end node n. € N, to the
start node ng, following the edges in the reverse direction.

The ANTCore algorithm continues by traversing G using the ANTTraversal pro-
cedure (Algorithm 7) and then selecting the best ant (champion) ¢ € A using the
FindChampion procedure (Algorithm 10). ANTTraversal and FindChampion pro-
cedures, both described in a greater detail below, are repeated NC' number of times so
that the pheromone levels have a more significant impact.

The output of the ANTCore procedure is ant a’s path P and the LCZ border nodes
it covers, stored in variables B;, for LCZ IN nodes and B,,; for LCZ OUT nodes. We

define B;,, and B,,; in Section Ant Traversal.

Finding Reachable LCZ Border Nodes

Procedure FindReachable BN s specified in Algorithm 6 traverses G from its end nodes
to the start node by the depth-first search (DFS) algorithm. The algorithm is storing the
LCZ IN and LCZ OUT nodes that are reachable from all x € N into D.

Ant Traversal

Algorithm 7 defines the process of traversing the SUT model G by a selected ant. For
each ant & € A, the algorithm starts to traverse G from the node n,. During the traversal,
it stores the nodes that ant £ visited in variable P. The LCZ border nodes that ant &
covered according to the selected test coverage criteria C are stored in a set B;, and a
mapping B,,;. The set B;, contains LCZ IN nodes. Storage of the LCZ OUT nodes
By is implemented as mapping Boys : bin — Bow, where by, € in(G,threshold) and
Boui C out(G, threshold).

As introduced earlier, the traversal of G by ant £ is guided by a combination of

pheromone disposal and desirability levels on the edges. The desirability level of each

CHAPTER 4. PROPOSED LIMITED NETWORK CONNECTIVITY TECHNIQUE39

Algorithm 5: ANTCore(G,threshold,C,U): Traverse the SUT model by ants,
who are trying to visit as much LCZ border nodes as possible; return the cham-
pion when finished.

Input : SUT model G, threshold, coverage criterion C, a mapping of yet
uncovered nodes U
Output: The best path P found, a set of LCZ IN nodes B;, covered in P, and a
mapping of LCZ OUT nodes B,;.
1 Set all constants for the ANT algorithm described in 4.4.2 to the values specified
in Table 4.2.
A is a set of m ants
P is a mapping of ant paths, where particular ant £ is the key and its path is the
value P[¢]
4 D+ () ; Dis amapping of a node n € G to a set (R, Rout), Rin C N € G,
R, C N € G, where nodes from R;, are reachable from n and nodes from R,,;
are reachable from n. This mapping is created for all N € G and D[z]| denotes

particular (R?,, R) for a node =.

w N

5 for each n, € N, do

6 V0, > A set to store visited nodes
7 D' + FindReachable BN s(G, threshold, U, D, V', n.)

8 D« D

9 end

10 count + 0
11 while count < NC do

12 count <— count + 1

13 for each £ € A do

14 Place ant & to the position of node ng

15 (P, B, B < ANTTraversal(G,threshold,C,U, &)

16 P[f] A Plv Mn[f] A Bz(m Mut[f] — Bgut

17 end

18 a < FindChampion(A, Nip, Nows, P) ; > Select the best ant a € A
19 for each edge (i,7) in Pla] do

20 Tij < Tij + ”)—LL” ;> Deposit pheromone on edges in Pla|, for 7;

see Section 4.4.2, |Pla]| denotes the number of nodes in Pla]

21 end

22 for each edge (i,j) € E € G do

23 T — (L= p) > 75 ; > Pheromone decay of all edges, for p see
Section 4.4.2

24 end

25 end

26 a < FindChampion(A, Nip, Nowt, P) ;> Find the ant with the best path
upon all iterations

27 P« P[CL], an < Mn[a]; Bout < /\/‘out[a]

28 return (P, B;,, Bout)

Algorithm 6: FindReachable BN s(G, threshold, U, D, V, n): Traverse the
SUT model G to find from which nodes we can reach which LCZ border nodes.
Input : SUT model G, threshold, a mapping of uncovered LCZ border nodes
U, a set of already visited nodes V', mapping D that for each node
x € N € G returns which LCZ border nodes can be reached from x,
traversed node n
Output: Updated D after all recursive iterations of this subroutine
1 for each p € parents(n) do

2 if p ¢V then

3 V«VUp

o || (R < DD

5 if n € in(G,threshold) and n is a key in U then

6 | R < R Un

7 end

8 if n € out(G,threshold) and U contains a value n for any key then
9 e is an edge from p to n

10 if cop(e) > threshold then

11 | Rb, < Rb,Un

12 end

13 end

u || Dl (R R

15 D' < FindReachable BN s(G, threshold, U, D, V| p) ; > Recursive call
16 D+TD

17 end
18 end
19 return D

edge is calculated by the CalculateDesirabilities procedure (Algorithm 8, described in
the following paragraph) and stored in mapping H, which maps each edge (i,j) € E to
a desirability level. The desirability levels of the edges are updated after each move the
ant makes because they are dependent on the B;, and B,,; variables, which are changed
during the execution of the ANTTraversal procedure.

When the desirability is computed, the ant moves to a randomly selected edge of G
using a probability stored in a mapping Ey,. This is calculated using the equation on
line 10 of Algorithm 7, which is inspired by Dorigo’s formula (1) in the study Ant colony
optimization: A new meta-heuristic [103].

Furthermore, according to the selected test coverage C, Algorithm 7 calls the Man-
ageBorderNodes procedure, specified in Algorithm 9. This procedure returns an updated
set B;, and a mapping B,,: of covered LCZ IN and LCZ OUT nodes respectively, based
on the ant’s current path and the node’s j nature (for instance, LCZ IN node, uncovered
LCZ OUT node, or other types). We introduce this algorithm details later in this section.

The procedure ManageBorderNodes ends when the ant moves to an end node n, € N,.

CHAPTER 4. PROPOSED LIMITED NETWORK CONNECTIVITY TECHNIQUEFEA41

Algorithm 7: ANTTraversal(G,threshold,C,U,&): The inner procedure of the
ANTCore algorithm, which performs the SUT model traversal by ant &.

Input : SUT model G, threshold, coverage criterion C, a mapping of uncovered
nodes U, ant &

Output: path P of ant &, a set B;, of LCZ IN nodes covered by &, a mapping
Bou: of LCZ OUT nodes covered by &

1 P < empty path ; > P is a path of ant ¢
2 P;, + empty path ; > A path of ¢ inside LCZ L € L(G,threshold)
3 B, < 0; > LCZ IN nodes set covered by ant &

4 B,y < Create an empty mapping b;,, — Bou;
bin € in(G, threshold), By C out(G,threshold)
5 Ny <— nal > The last LCZ IN node reached by ant ¢ during its path
6 while ¢ has not reached n. do
7 1 < current position of £, N; < set of ¢ descendants
H < Calculate Desirabilities(G, U, C, i, Ny, P, D, Bin, Bout)
8 En, is a mapping where a value is a number < 0,1 > of probability of ant £
moving to j € N; via edge x incoming to j and key is x
9 for all nodes j € N; do
(7)™ - (H(3, 5)])"
> T M)
IEN;
moving to node j by edge (i,7)

10 En, (i, 7)] + ;> Store the probability of ant ¢

11 end

12 Randomly select next node j € N; to move ant £ to, using edge (¢, 7). In this
selection, probability En,[(7,7)] is used.

13 if cop((i,7)) > threshold then Add (i,7) at the end of Py ;

14 Add (i, 7) at the end of P ; Move £ from i to j using (i,)

15 if j is a key in U then

16 ‘ N < 7 ; > node j is uncovered LCZ IN node
17 end
18 else if j is anywhere in values of U then
19 B;, + B;, U {nm}, Bgut [nm] — Bout [nm] U {j}
20 if C = Comprehensive All BorderCombinations or
C = Comprehensive EachBorderOnce then
21 | (B}, B..;) ManageBorderNodes(ni, j, Bin, Bou, U, C, PL)
22 end
23 else
24 for each node x in Py from the beginning of Pr, do
25 P} + part of P, starting with «
26 for each node p’ in P} from the beginning of P; do
27 | (B}, B..) + ManageBorderNodes(x, p', Bin, Bow, U, C, PL)
28 end
29 end
30 end
31 end
32 (Bin, Bout) < (Bl Blyt)
33 end

34 return (P, By, Bou)

The Calculation of Edge Desirability

Edge desirabilities are computed by the CalculateDesirabilities procedure specified in
Algorithm 8. This procedure produces a mapping H that for each edge (i, j) € E returns
its desirability h €< 0,1 >, which corresponds to the number of uncovered LCZ border
nodes reachable when using edge e. The procedure works as follows. First, the algorithm
initializes the mapping H. Then, it iterates each edge (7,j) and stores the number of
reachable uncovered LCZ border nodes in variable h. The algorithm gets the set of
uncovered LCZ IN nodes in an and the set of uncovered LCZ OUT nodes from R,
which it gets as a tuple (R? , R’

in) ~ Cout

) from the mapping D. These sets need to be updated
based on the path the ant traversed; therefore, the algorithm creates another sets R{n’ and
R’ . empty initially. Firstly, the algorithm updates Rgn’ when node j is an uncovered

out

LCZ IN node. Secondly, it updates R’ ,’ when node j is an uncovered LCZ OUT node.

out

The rest of the algorithm updates an’ , Riut’ , and h according to the current position of
the ant; whether it is inside, on the border, or outside any LCZ, and according to the
chosen test coverage criterion C. Specifically, h is equal to the number of nodes in sets Rgn’
and R /. If there is at least one such uncovered node (h > 0), we project h into b’ € (0,1)

out *

1
using a function A’ = ~5n + 1 and store it with key (7, 7) into H, which is returned by

the Calculate Desirabilities procedure when the iteration of edges is complete.

Traversing G and Covering LCZ Border Nodes

When the ant is traversing G, the algorithm keeps sets of covered border nodes B;,
and B,,; dynamically updated. This is done by using the ManageBorderNodes procedure,
described in Algorithm 9. This procedure returns the updated set of LCZ IN nodes B;,, and
LCZ OUT nodes B,,; that the ant covered, according to the selected test coverage criterion
C. First, the ManageBorderNodes procedure tests whether n;, and n,,; aren’t covered yet
by checking their presence in U, and if not, it updates B, and B,,; accordingly. Then, if C
is equal to EachBorderOnce or Comprehensive EachBorderOnce, the algorithm iterates
each uncovered LCZ IN node u;, € U that has the LCZ OUT node n,y in the set U [u;,]
and then updates Boyi[tin], where the information if the LCZ OUT n,,; is covered by this
ant is stored. LCZ IN node n;, is covered by ant (added to B;,) for EachBorderOnce
or ComprehensiveFEachBorderOnce test coverage criteria in all cases. For the other test
coverage criteria, n;, is added to B;, only when the mapping B,,; of LCZ OUT nodes

(covered by the current ant in use) contains all yet uncovered LCZ OUT nodes U|u;,).

CHAPTER 4. PROPOSED LIMITED NETWORK CONNECTIVITY TECHNIQUE43

Algorithm 8: CalculateDesirabilities(G, U, C, i, Ny, P, D, By, Bout): Calcu-
lates desirabilities of the edges according to the number of border nodes reachable
from surrounding nodes and not covered yet.

Input : SUT model G, mapping of uncovered LCZ border nodes U/, coverage
criterion C, node i, uncovered LCZ IN node n;, path P of ant, mapping
D that for each node n € N € G returns which LCZ border nodes it
reaches, set of covered LCZ IN nodes B;,, set of covered LCZ OUT
nodes B,
Output: Mapping H for ant-routing to neighbors of 7, where a key is some edge,
and a value is its desirability.
1 Set ‘H as empty
for each edge (i,7) outgoing node i

N

3 h=0; > Number of reachable uncovered LCZ border nodes when
using edge (i,7)

4 (R} R} .) < Dlj] ; > Symbols defined in Algorithm 5
5 R{n’ «—~0; > Uncovered LCZ IN nodes reachable from node j
6 Riut’ —0; > Uncovered LCZ OUT nodes reachable from node j
7 | if j € R}, then

s | | R, + Rl,\By

9 end

10 | if j € R, then

11 for each LCZ OUT node r € R, do

12 if 7 is not in values in mapping B, then

13 ‘ Riut’ — Riut’ U {r}

14 end

15 end

16 end

17 if (4,7) is an LCZ edge then

18 L is an LCZ that contains (i, j)

19 if n;, is not nil then

20 R+ R /\ {i}; > Because i is uncovered LCZ OUT node
21 Rgn’ — Rgn’ \ in(L)

22 h=1+|R]|+|R,/|

23 end

24 else if last edge of path P is not a LCZ edge and i € U and i ¢ By, then
25 R}« R\ {5} ; > Because j is uncovered LCZ IN node
26 h=1+|R]|+|R,/|

27 end

28 else

29 R} "« RJ'\ out(L)

30 end
31 end
32 ... continues on the following page

33

34 ... continuation of Algorithm 8
35 else if n;, is not nil and (i € U or C = Comprehensive EachBorderOnce or
C = EachBorderOnce) then
36 ‘ h=1+|R.'|+|R.,,
37 end
38 else if n;, is nil and i € U and i ¢ B;, then
39 ‘ h=0; > To avoid reaching border of LCZ zone
40 end
a1 else
42 ‘ h=|R'|: > (i,j) is leading to a LCZ OUT node
43 end
44 if h > 0 then
1
[—
45 h' = ~5n +1
46 end
a7 else
48 ‘ h =0
49 end
50 | H[(i,7)] < I ; > PUT h to H with key (i,7)
51 end

52 return H

Choosing the Best Ant

When all ants find an end node n € N, and finish their paths, the algorithm selects the
best ant a € A, which we call a champion. The process of finding the champion is specified
in Algorithm 10. It iterates A and selects the best ant a based on its path P[a]. The best
path contains the highest number of yet uncovered LCZ border nodes that are stored in
N, and N,,; and has the shortest length-equal to |Plal|.

The path P of the best ant, together with the LCZ IN nodes it covers in set B;,, and
LCZ OUT nodes in the mapping B,,; is propagated to the main ANT procedure that
adds P to the set of test cases T and according to B;, and B,,; updates the content of
mapping U with yet uncovered LCZ border nodes. When U is empty, ANT returns the

final set of test cases 7.

4.4.3 Adapted Genetic Algorithm

Another alternative, based on a different principle, we propose to generate T' from G is
the Adapted Genetic Algorithm (AGA). It generates T' from G, a specified threshold and
the test coverage criterion C. The implementation of the AGA consists of the elements

and actions detailed in the below paragraph.

CHAPTER 4. PROPOSED LIMITED NETWORK CONNECTIVITY TECHNIQUE45

Algorithm 9: ManageBorder Nodes(Nin, Nout, Bin, Bout, U, C, Pr): Cover the
LCZ IN and OUT nodes in the parameters by adding them to B;, and B,;.
Input : LCZ IN node n;, to be covered, LCZ OUT node n,,; to be covered, a
set of covered LCZ IN nodes B;,, a mapping of covered LCZ OUT
nodes B,,;, a mapping U of uncovered LLCZ border nodes, coverage
criterion C, a set P, where a path through LCZ L is stored
Output: Updated sets B;, and B,

1 if n;, € U then

2 if 1w € Uiy then

3 Bout [nzn] — Bout [nzn]) {nout}

4 if 1y, = now and ny, € Un;,| and |Pr| > 0 then

5 ‘ Bout[nin] <= Bowt[Nin) U{nin} ; > ny, pointing to itself in U[ng,]
6 end

7 end

8 end

9 if C = FachBorderOnce or C = ComprehensiveFEachBorderOnce then
10 for each u;,, € U do

11 if 1w € Uluyy,) then

12 ‘ Bout [uzn] <~ Bout [uln]) {nout}

13 end

14 end

15 Bin < Bin U{ni,}
16 end
17 else

18 if n;, € B,y then

19 if U[n;,| C Bowt[nin] ;> A1l LCZ OUT nodes in U[n;,| were covered
20 then

21 ‘ Biy < B U{ni,}

22 end

23 end
24 end

N
(S}

return (B, Bou:)

Initially, the algorithm generates a population of structures called chromosomes. A
chromosome represents a candidate solution to a given problem, the quality of which can
be assessed by a specific fitness function. During the execution of the AGA, a specific
selection mechanism is implemented for reproduction of the members of the population
that have the highest value of the fitness function. Afterward, some genetic operators
that alter the internal parts of the chromosomes, called genes, are applied to create better
successors of the current population [68]. The selection, reproduction, and genetic opera-
tors” application are repeated a specific number of times, which represents the evolution of
chromosomes. When the best chromosome in the resultant population (explained further)
represents a valid test case, it is added to T. After a number of repetitions, 7' contains

test cases that satisfy the selected test coverage criterion C. The following sections specify

Algorithm 10: FindChampion(A, Nip, Nows, P): Tterate a set of ants A and find
the one that visits the biggest number of uncovered yet LCZ border nodes using
the smallest number of steps.
Input : Set of ants A, mapping of LCZ IN nodes N, visited by each ant,
mapping of LCZ OUT nodes N, visited by each ant, mapping of each
ant paths P
Output: Ant a that found the most efficient path
1 a < any ant from A
2 for each t € A do
3 if (NVin[t] + Nowt]) > (Ninla] + Nowe[a]) then
4 ‘ a1t
5 end
6
7
8
9

else if (N, [t] + Nowi[t]) = (Ninla] + Nouea]) then
if |P[t]| < |P]a]| then

‘ a<t

end

10 end
11 end
12 return a

the algorithm details.

The AGA Elements

Chromosome representation. The AGA is designed to find the set of test paths in an
SUT model G that satisfies the selected test coverage criterion C. Since the SUT model
is a directed graph and the test paths are paths from n, to n. € N,, we decided to model
the individual G edges as genes and the chromosomes as sequences of these edges.

The initial population. The initial population can be created in a number of ways:
1. Create the candidate solutions manually [73].
2. Generate the candidate solutions randomly [75].

3. Generate the initial population using a specific heuristic, for example, using chaotic

maps or the Min-Min heuristic [104].

4. Generate only a sub-solution and, through a specific operator, improve the popula-

tion to become a valid solution to the problem [74].

We generate the initial population using the fourth option from the list and more
details we present in Section The Initial Chromosome Population.
Fitness function. A fitness function of the GA represents an evaluation mechanism

that measures chromosome quality. Therefore, it guides the evolution of the chromosomes,

CHAPTER 4. PROPOSED LIMITED NETWORK CONNECTIVITY TECHNIQUEAT

nourishes chromosomes with better fitness, and ignores those with worse fitness. Selecting
the right fitness function is crucial to the quality of the solution and the execution run
time [105].

To generate chromosomes, which are adjacent sequence of edges in G that satisfy the
selected test coverage criterion, several fitness function calculations can be used. Hoseini
and Jalili suggest counting the number of prime paths contained in the chromosome
combined with its length to cover the prime path coverage [76]. Girgis defines a calculation
of the fitness function for solving the DFT problem as a fraction of the number of def-use
paths covered by an evaluated chromosome to the total number of def-use paths in G
[106]. To satisfy the coverage of the basis path, Ghiduk defines the fitness value for each
chromosome as the sum of adjacent edges of the chromosome divided by the total number
of edges on the same chromosome [74].

To make the test set T generated by the AGA satisfying the selected test coverage
AGESAD

2

criterion C, we define the fitness value as f(c) , where f, is an adjacent
fitness and f, is a quality fitness. The adjacent fitness f,(c) of chromosome c is calculated
as a fraction of the longest adjacent sequence of edges in ¢ to the total number of edges in
c. The quality fitness f,(c) of chromosome c is calculated as a fraction of the number of
LCZ border nodes contained in ¢ that satisfy the selected test coverage criterion C to the
total number of remaining LCZ border nodes not yet contained in the set of chromosomes
generated in previous repetitions of the AGA.

Selection step. The AGA selection step is responsible for selecting which individual
chromosomes are suitable for reproduction and for the creation of new chromosomes that
are passed on to the next generation.

We chose to use roulette wheel selection, which selects a chromosome, from each
generation, with a probability p(i) proportional to the fitness of the individual divided by
the sum of the fitness of the entire population [107].

Reproduction (crossover). Generally, the reproduction (or crossover) process de-
scribes the creation of new chromosomes, called offspring, from the selected pair of parents
and is performed for each chromosome in the generation with probability P..

There are several methods to perform reproduction, and the differences lie in which of
the parents’ genes are passed to the offspring [104]. With AGA, we use the one-point (or
single) crossover, where a selected pair of parents exchange information around a random
position and thus create two new chromosomes.

Another GA operators. In the literature, another GA operators, such as Mutation,
Breeding, or Elitist are defined to alter chromosomes and, therefore, facilitate the creation
of better candidate solutions to the given problem [74], [104]. The Mutation operator

iterates genes on the chromosome and, with a specified probability, alters each gene to

a different value. If the offspring contains any chromosomes with lower fitness than the
chromosomes with the highest fitness in the current generation, the Elitist operator swaps
those chromosomes and propagates the individual with the highest fitness in a generation
to the next generation.

During the evolution, among other requirements, we need to find a solution that
represents a valid test path. However, in the initial population, the chromosomes consist
of only a few edges that, in most cases, are non-adjacent. To address this issue, we
propose the use of two operators with a certain level of probability to be applied to the
chromosomes. The Breeding operator iterates the sequence of edges in the chromosome,
and when a pair of neighboring edges is non-adjacent, it inserts a random edge between
them, which is adjacent to the first edge in the pair. As we cannot know in advance
the exact length of the chromosome, there needs to be a way to cut the exceeding part
of the chromosome if it gets too large during the evolution. Therefore, we present a
Dissolve operator that removes all genes after the first occurrence of a non-adjacent pair
of neighboring genes in the chromosome.

The stop conditions. The AGA is successfully terminated when the generated T
satisfies the test coverage criterion, or fails when the maximum number of repetitions is
reached. Although variants of GAs generating test sets that satisfy the segment, branch,
and path test coverage criteria [108] already exist, in this thesis we present the novel AGA

to generate T', which satisfies the test coverage criteria defined in Section 4.2.

The AGA Variables

The following constants and variables are used in the AGA:

e REPS: The maximal number of repetitions of the AGA when it does not return

T, which satisfies the selected coverage criterion.
e [TERS: The maximal number of generations reached.

e CMULT: The multiplication constant that affects the number of chromosomes in

a generation.
e CMIN: The minimal number of chromosomes in a generation.
e (MAX: The maximal number of chromosomes in a generation.
e P,: The probability of breeding a chromosome in a generation.
e P;: The probability of dissolving a chromosome in a generation.

e P.: The probability of crossover of chromosome in a generation.

CHAPTER 4. PROPOSED LIMITED NETWORK CONNECTIVITY TECHNIQUE49

Constants | Initial value
REPS 1000
ITERS 500
CMULT 10
CMIN 20
CMAX 100
b, 0.8
P, 0.6
P. 0.6
P, 0.6
P, 0.05

Table 4.3: The initial values of the variables and the values of the constants for the AGA
algorithm.

e P,: The probability of applying the mutation operator to a chromosome.
e P,: The probability of gene mutation in a chromosome.
e f,: The adjacent fitness value of a chromosome.

e f,: The quality fitness value of a chromosome.

The initial values of particular variables and values of constants used in AGA are
specified in Table 4.3. They are the results of repeating the execution of AGA with the
different values of these variables using 310 SUT models presented in Section 7.2. Before
the start of this tuning, the initial values of discussed variables and constants were inspired
by previous research on GAs [68], [109].

The Main Algorithm

We specify AGAM ain, the main routine of the AGA, in Algorithm 11. The algorithm
accepts an SUT model G, selected threshold, the coverage criterion C, and a mapping U
of LCZ border nodes that must be covered. U is a mapping where a key is an LCZ IN
node k € in(G, threshold) and a value is a set of LCZ OUT nodes O € out(G, threshold)
for which a path from k& to o € O in G exists.

In the initial phase of the AGAMain, a new generation of a set of chromosomes I'
is initialized, using the InitNewGeneration procedure (specified in Algorithm 12). The
evolution of chromosomes is performed through the Generate NextGeneration procedure
(specified in Algorithm 13) that repeatedly generates the next generation of chromosomes
until the count of these repetitions reaches the value of the ITERS constant. When this
happens, the FvalGeneration procedure is called to find a new test path that covers

some of uncovered LCZ border nodes from the last generation. An LCZ border node

is uncovered, when it is present in the mapping U. If the last generation contains a

chromosome that satisfies this condition, the set of test paths T and the mapping of

uncovered LCZ border nodes U are updated, the chromosome generation I' is reverted

to its initial state, and the outer loop repeats. If the last generation does not contain a

chromosome that covers any of LCZ border nodes, the algorithm continues the evolution
another ITERS times. If this does not result in a solution after REPS repetitions, the

AGAMain ends with a failure.

The Algorithm 11 successfully terminates and returns the set of test paths 7' that

satisfies C, when the mapping U/ is empty.

Algorithm 11: AGAMain(G,threshold,C,U): The main AGA algorithm rou-
tine.

Input : SUT model G, threshold, coverage criterion C, and mapping of
uncovered LCZ border nodes U
Output: set of test paths T'
1 reps =0 ; > Counter of the algorithm repetitions
2 I' < InitNewGeneration(G) ; > An initial chromosomes generation I
3 T < an empty set of test paths
4 while reps < REPS U U #) do

5 genNo =0
6 | while genNo < ITERS U U # () do
7 genNo = genNo + 1
8 if genNo = ITERS then
9 (T",U") «+ EvalGeneration(G,threshold,C,I',U,T)
10 if |7"| > |T'| then
11 T+ T ;U+U
12 if U # () then
13 genNo =0
14 I' < InitNewGeneration(G)
15 end
16 end
17 end
18 else
19 if |T'| # Original size of T then
20 [' + T" appended with chromosomes that were added to the initial
generation to reach original size of I'
21 end
22 [' - GenerateNextGeneration(G, threshold,C,U,T")
23 end
24 end
25 end

26 return T

CHAPTER 4. PROPOSED LIMITED NETWORK CONNECTIVITY TECHNIQUEb1

The Initial Chromosome Population

We describe the Init NewGeneration procedure that creates an initial generation of chro-
mosome population I' in Algorithm 12. Initially, it calculates the value of variable count
that will represent the number of chromosomes in I'. The value of count variable is set
according to the number of edges outgoing n, stored in Ey, the number of all edges in-
coming to all n, € N, stored in F., and the CMULT constant. However, the values of
count are bound to the < CMIN,CMAX > interval, therefore, if the result is lower,
count is set to CMIN and if the result is greater, count is set to CMAX.

Then, the Init NewGeneration procedure performs a chromosome creation count num-
ber of times. During this phase, firstly, the algorithm creates a sequence of edges P that
consists of one of the edges outgoing from n, and one of the edges incoming to one of
the n. € N, and this set of edges is set as the initial chromosome c. Secondly, using the
Breeding procedure specified in Algorithm 15, we apply the Breeding operator and create

chromosome ¢. Lastly, ¢’ is added to T'.

Chromosome Evolution

The chromosomes evolve by repetitively creating an offspring generation out of the current
one, which is performed in the GenerateNextGeneration procedure, described in Algo-
rithm 13. At first, it calls the Select& Reproduce procedure (see Algorithm 14) that selects
the best chromosomes in I' and reproduces them to the newly created offspring generation
A. Then, it calls the Elitist function (not detailed by a pseudocode in this thesis), which
replaces the worst chromosome in the offspring generation with the best chromosome in
the current generation, if it has a lower fitness value. The resulting offspring generation
is stored in the new variable A'.

Then, the GenerateNextGeneration procedure calculates a tuple of fitness values
(fas fy) for every chromosome ¢ in A’. If ¢ is a test path, but does not cover any uncov-
ered LCZ border nodes stored in the mapping U, ¢ is removed from A’. Otherwise, a
pseudo-random number r, € <0; 1) is generated, and, if smaller than Py, the Breeding
operator is applied. The same process follows for the Dissolve operator. Lastly, the
FillInGeneration procedure is called, which appends new chromosomes to A’ so that
the number of chromosomes in a generation remains the same throughout the AGA’s
execution.

The FillInGeneration procedure (not detailed by a pseudocode in this thesis) creates
new chromosomes in a way that they are made of one of the edges outgoing n,, and the

Breeding operator is applied to them once.

Algorithm 12: InitNewGeneration(G): Creates the initial generation of chro-
mosomes.

© 00 N O ok W N =

W NN NN NN NNDNDN R e e
© © o N O U A W N = O © 0N o 0k W N = O

31
32
33

Input : SUT model G
Output: The initial generation of chromosomes I'

L« 0; > Initialize an empty generation of chromosomes
E; < Get edges outgoing from node n
E.«+0; > Initialize an empty set of edges
for j € N, do
‘ E. + E. U All edges incoming to the end node j
end
count = |Eq| - |E.| - CMULT
if count < CMIN then
‘ count = CMIN

end
else if count > CMAX then

‘ count = CMAX
end
else if count mod 2 # 0 ; > Make count even, if it is odd
then

‘ count = count + 1
end
while i < count do
for (i,5) € Es do
for (k,1) € E. do
P+0; > An empty sequence that will contain edges
Add (4,7) to P ; Add (k,1) to P
¢ < Create chromosome with initial sequence of edges P
¢’ < Breeding(c)
Put ¢ to T’
=141
if 7 = count then

return I’

end

end
end

end
return [

CHAPTER 4. PROPOSED LIMITED NETWORK CONNECTIVITY TECHNIQUEb53

Algorithm 13: GenerateNextGeneration(G,threshold,C,U,T"): Generate the
next generation of chromosomes.
Input : SUT model G, threshold, coverage criterion C, a mapping of uncovered
LCZ border nodes U, and chromosomes in generation I"

Output: Next generation of chromosomes A
1 A < Select& Reproduce(G, threshold,T",C,U)

2 A’ « Elitist(A)

3 for c € A’ do

4 (fas fq) < CalculateFitness(G,threshold, c,C,U)
5 if fo=1ANf,=0; > Sequence of edges of ¢ is adjacent, but

doesn’t cover any LCZ border nodes

6 then

7 ‘ Remove ¢ from A’

8 end

9 else

10 r, = A random number from <O;1)

11 if r, < P, then

12 ¢+ Breeding(c)

13 Replace chromosome ¢ by ¢’ in generation I'
14 end

15 rq = A random number from <0;1)

16 if r; < P; then

17 ¢’ < Dissolve(c)

18 Replace chromosome ¢ by ¢ in generation I'
19 end

20 end
21 end

22 A < FillInGeneration(A')
23 return A

Reproduction of the Chromosomes

The Select& Reproduce procedure, described in Algorithm 14, starts with the Selection
and Crossover operators implemented in the Selection and C'rossover procedures.

The Selection procedure only sorts chromosomes in I' according to their fitness, and
then returns them as a new generation F'.

The Crossover procedure creates an offspring generation A. It creates a new chro-
mosome cd for each chromosome ¢ € F' with a probability P, that is made by a one-point
crossover of chromosomes ¢ and d; d follows ¢ in F'. Otherwise, cd is equal to ¢. Chromo-
some cd is then inserted into A. Selection and Crossover procedures are not detailed by
a pseudocode in this thesis.

The Select& Reproduce procedure continues by calculating the fitness of chromosomes
in A and storing it into a mapping F,F : ¢ — x;c € I';z € (0,1). Then, A is sorted in
descending order (according to the fitness of its chromosomes) and stored into A’.

Lastly, with a probability P,,, the Mutation operator, defined in the Mutation proce-
dure, is applied to each chromosome ¢ € A’ and the result is put into a new generation
A". The Mutation procedure (not detailed by a pseudocode in this thesis) iterates each
gene g of chromosome ¢ and with a probability P, swaps g with a different random gene
h. In our algorithm, A corresponds to a random edge following gene ¢’s predecessor in
the sequence of edges corresponding to c.

We do not further describe the concrete details of Selection, Crossover, and Mutation
procedures, as they generally correspond to those already published, for example, by
Ghiduk [74].

Extension and Dissolving of the Chromosomes

Due to the nature of the problem, it is impossible to predict the exact length of the
chromosome during an iteration. Therefore, it is necessary to have the option to extend
or shrink it. The Breeding operator and the Dissolve operator, respectively, represent the
solution to this need.

We present the details of the Breeding operator in the Breeding procedure, specified
in Algorithm 15. It breeds the chromosome c as follows: at first, it iterates the edges in P,
which contains the current sequence of edges corresponding to ¢ and increases a counter
i. When it reaches the first edge that is non-adjacent with a previous sequence of edges
in P, or the end of P, the loop ends. Then, if the index ¢ is smaller than the length of P
and if P does not end in node n € N,, it selects a random edge outgoing of the node with
index 7 in P and places it in P at position i + 1. This creates an updated chromosome ¢/,

which is then returned.

CHAPTER 4. PROPOSED LIMITED NETWORK CONNECTIVITY TECHNIQUEbS5

Algorithm 14: Select& Reproduce(G,threshold,T',C,U): Selection and repro-

duction of the chromosomes in the current generation.

Input : SUT model G, threshold, chromosomes in a generation I', the selected
coverage C, and the mapping of uncovered LCZ border nodes U

Output: New generation of chromosomes A

F « Selection(G, threshold,T',C) ; > Perform the selection of parents

A <« Crossover(F) ; > A new generation of offspring of F

F < A mapping F : ¢ — x;c € ',z € (0,1) of fitness of chromosomes

for ce A do

(fas fq) < CalculateFitness(G, threshold, c,C,U)

S 3

end

A" + Sort A according to F in the descending order

A"« ()

10 for c € A’ do

11 Tm = A random number from <O;1)

12 if r,,, < P,, then

13 ' <« Mutation(c)

14 Put ¢ to A"

15 end

16 end

17 A < A” ; return A

oA W N =

© 0w

The Dissolve procedure (Algorithm 16) keeps the sequence of adjacent edges in ¢ and
removes the edges that are not adjacent with this sequence. The procedure is analogous to
that of the Breeding operator with one difference: instead of extending the chromosome,

it removes all edges after the i-th node in P.

The Fitness Calculation

To evaluate the chromosomes and guide the evolution the right way, the C'alculate Flitness
procedure (Algorithm 17) that performs the fitness calculation is defined. It returns a
tuple (f., f,), where f, represents an adjacent fitness, and f, represents a quality fitness
that both contribute by one-half to the total fitness f. The adjacent fitness is calculated
as the number of the longest sequence of adjacent edges in P, divided by the total length
of P. To calculate the quality fitness, the Border NodesCover procedure (Algorithm 19)
that returns a tuple (q,U’) is called. In this tuple, variable ¢ represents a number of
LCZ border nodes that the current chromosome contains in its P, and U’ is a mapping of

uncovered LCZ border nodes if P is used as a test path.

Algorithm 15: Breeding(c): Extend the chromosome by one adjacent edge in
its first non-adjacent part.

Input : A chromosome c
Output: Extended chromosome ¢
P < A current sequence of edges in ¢
(k,1) < The first edge in P
1=0
for each (m,n) € P\ {(k,0)} do
ifl=m; > The edges are adjacent
then 1 =7+1;
else if ne N, ; > Some end node inside P
then i =7+1;
else break ;
end
if i < |P| then
(m,n) < P, ; > Edge at i-th position of P
if n ¢ N, then
(n,0) < Pick a random edge starting in n
Py = (n,o0); > Place (n,0) at i+ 1 position in P

© 00 N O Gk W Ny

e T o =
A W N = O

end

=
=]

end

¢ < A copy of chromosome ¢
Assign P to chromosome ¢/
return ¢

[S S
S © w

Processing the Last Generation to Find Test Paths

When the chromosomes evolve enough, it is necessary to find the best chromosome that
represents a valid test path and that contains some of the uncovered combinations of
LCZ border nodes. We specify this functionality in the EvalGeneration (Algorithm 18).
At first, it sorts the chromosomes in I' in descending order according to their fitness.
Then, the EvalGeneration iterates over them, searching for the best chromosome ¢,
that has a quality fitness greater than 0 and contains a sequence of adjacent edges that
starts at a start node ng and ends at one of the n € N, (adjacent fitness is equal to 1).
Subsequently, the FvalGeneration invokes the Border N odesCover procedure (Algorithm
19) on chromosome ¢;,. The Border NodesCover procedure calculates the number of LCZ
border nodes that ¢ covers. Then, the set of test paths T is extended by c;.

Lastly, the EvalGeneration procedure returns a tuple (7",U’), where T" represents
an updated set of test paths, and U’ represents an updated mapping of uncovered LCZ

border nodes.

CHAPTER 4. PROPOSED LIMITED NETWORK CONNECTIVITY TECHNIQUES7

Algorithm 16: Dissolve(c): Remove all edges that are after the adjacent se-
quence of edges from the chromosome.

Input : A chromosome c

Output: Chromosome ¢ with edges that are only adjacent

P < A current sequence of edges in ¢

(k,1) < The first edge in P, outgoing from k and incoming to [, {k,l} € N

=0

for (m,n) € P\ {(k,1)} do
ifl=m; > The edges are adjacent
then 1 =1+1;
else break ;

end

P’ < A copy of P

for (m,n) € (Pi1, Piya, ..., Flp|) do

| P« P\ (m,n) ; > Remove (m,n) from P’

end

¢ < A copy of chromosome ¢

Assign P’ to chromosome ¢

return ¢

© 00 N o Rk W N =

e = S S
R W N R O

Covering the LCZ Border Nodes

The Border NodesCover procedure, described in Algorithm 19 performs the evaluation
of the quality of the chromosome according to the selected test coverage criterion C, and
possible removal of the LCZ border nodes being covered according to the mapping of
uncovered LCZ border nodes U.

In its first part, it initializes temporary variables P, B;,, B, and U’, where P is a
sequence of edges in ¢, B;, is a set of LCZ IN nodes that P covers, B,,; is a mapping of
LCZ OUT nodes that P covers, and U’ is a copy of the mapping of uncovered LCZ border
nodes U.

Then, the Border NodesCover procedure iterates over the edges in the sequence P
corresponding to the input chromosome ¢. When the traversed edge (k,l) € P is a LCZ
edge and begins in an uncovered LCZ IN node k € U’, the Border NodesCover iterates
the subsequence P’ C P in which the first edge is outgoing from node k.

Until the edges in the subsequence P’ are adjacent, the iteration continues by searching
for an uncovered LCZ OUT node n € U'[k] of an edge (m,n) € P'. Together with an LCZ
IN node k, an LCZ OUT node n composes an uncovered LCZ border node combination,
which is stored in a mapping B,,;. Then, if the input flag r is set, the Border NodesCover
procedure removes n from U'[k].

Next, for FachBorderOnce or ComprehensiveEachBorderOnce test coverage criteria,

the procedure also inserts the LCZ OUT node n into the set Byui[ui,] for all LCZ IN

Algorithm 17: CalculateFitness(G, threshold, c,C,U): Calculate fitness values
of the chromosome.

Input : SUT model G, threshold, chromosome ¢, the selected coverage C, and
mapping of uncovered LCZ border nodes U.

Output: A tuple of values (f,, f,), where f, represents the adjacency fitness and
fq represents the quality fitness.

P <+ a sequence of edges in ¢

2 a = the number of adjacent edges in the longest adjacent sequence of edges in P

[y

w
N
|

I

if |[U| > 0 then
(q,U") + Border NodesCover(G,threshold,c,C,U, false)

q
fo= e
T T TP

<)

(=]

7 end
else f,=1;
return (f,, f;)

©

Algorithm 18: FvalGeneration(G,threshold,C,T',U,T): Iterate over the chro-
mosomes and find the best that represents a valid test path and then cover the
border nodes.

Input : SUT model G, threshold, coverage criterion C, generation of
chromosomes I', mapping of uncovered LCZ border nodes U and a
current set of test paths T'.
Output: A tuple (77,U") comprised from an extended set of test paths 7" and
edited mapping of uncovered LCZ border nodes U’
C'" + Sorted chromosomes from I' according to the fitness in descending order
¢p < Init an empty chromosome
for each c € C' do
(fas fq) < CalculateFitness(G,threshold, c,C,U)
P < A current sequence of edges in ¢
p < the last node in P
if f,=1Af,>0Ape N, then
Cp < C
break
end

© 00 N O ok W N

=
o

end

(q,U") < Border NodesCover(G,threshold, ¢y, C,U, true)
P, + A sequence of edges in ¢,

T < T ;Put P, toT’

return (7", U")

T
cOR W N R

CHAPTER 4. PROPOSED LIMITED NETWORK CONNECTIVITY TECHNIQUE59

nodes u;, € U', for which holds that n € U'[u;,]. Moreover, if the flag r is set, the
BorderNodesCover procedure also removes n for all w;, from U'[u;,].

Then, the algorithm verifies if P reaches one of n, € N, (which can be an LCZ OUT
node). If P reaches such a node, the LCZ border nodes covered by P are stored in B, and
B,.: and if the flag r is set, the LCZ border node combinations present in P are removed
from U’, according to the selected test coverage criterion the same way as described above.

When the chromosome iteration is over, the algorithm counts the uncovered LCZ IN
nodes stored in B;, and saves this value in the variable ¢;,. And if the flag r is set, it
removes them from U’. Then, the uncovered LCZ OUT nodes stored in B,,; are counted
and their number is saved to ¢,,;. Lastly, the variable ¢ contains the sum of ¢;, and ¢,
and is returned together with the updated mapping of the uncovered LCZ border nodes
u'.

The repeated chromosome evolution is finished when the generated set of test paths T
satisfies the test coverage criterion C (ensured by the condition that the set of uncovered
LCZ border nodes U is empty). When this condition is satisfied, the main routine of AGA

(Algorithm 11) successfully terminates and returns 7.

4.4.4 Complexity of the Proposed Algorithms

We present worst-case time and space complexities of the proposed algorithms in Table
4.4. In the table, variable F represents a set of all edges outgoing n, and E, is a set of

all edges incoming all N, for the corresponding problem instance.

Name Time Complexity Space Complexity
SPC | O(I£] - [in(G)| - [out(G)[- NI*) | O(in(G)] - Jout(G)| - [N])
ANT | O(|in(G)| - lout(G)| - [N| - |E]) O(INT?)

AGA | O(|E| - [E|(log(|Es| - |Ee]))) | O(ES] - [Ee| + IN| +|E])

Table 4.4: Time and space complexity of the proposed algorithms.

Algorithm 19: Border NodesCover(G, threshold, c,C,U,r): Identifies the LCZ
border nodes present in ¢ according to the test coverage criterion C, calculates
their number, and if r is set, removes them from U.

[

w

[B

10
11

12
13
14

15
16

Input : SUT model G, threshold, chromosome ¢, the selected coverage C,
mapping of uncovered LCZ border nodes U, and flag » whether to
remove nodes from U.

Output: The tuple (¢,U’), where ¢ is the number of LCZ border nodes according
to the current coverage that chromosome ¢ contains and U’ is the
possible edited mapping of uncovered LCZ border nodes.

P <+ A sequence of edges of ¢

By, < Initialize an empty set of LCZ IN nodes n € in(G,threshold) € G that are

covered in P according to a selected C
Bout < Initialize an empty mapping that for LCZ IN node
n € in(G,threshold) € G returns a set of LCZ OUT nodes
O € out(G, threshold) € G that are covered in P according to a selected C

U+ A copy of U

for (k,l)eP

if C = Comprehensive All BorderCombinations V C =

Comprehensive EachOnce then

(1,7) < preceding edge in_ P((k,l))
if cop((i,j)) >= threshold then continue ;

end

f cop((k,l)) >= threshold N k € U’

P' < P, ..,Pp ; > A sub-sequence of P in which the first edge

is is outgoing from node k

for (m,n) € P’

(0,p) < next _edge in(P’)

ifn#o; > The next edge in P’ is non-adjacent to the

previous one

then break ;

. continues on the following page

o

CHAPTER 4. PROPOSED LIMITED NETWORK CONNECTIVITY TECHNIQUEG61

13

14

15

16 ... continuation of Algorithm 19

17 if C = AllBorderCombinations V C =

EachBorderOnce V cop((m,n)) < threshold then

18 Put k to B;,

19 if U'[k] contains n then

20 Put n to Byu|k]

21 if r = true then

22 Remove n from U'[k]

23 if U'[k] = () then Remove k from U’ ;

24 end

25 if
C = FachBorderOnceV C = Comprehensive EachBorderOnce
then

26 for each u,;,, € U’ do

27 if U'[ug,] contains nV uy, = n then

28 Put n to Bout[tin]

29 if » = true then

30 Remove n from U'[u;,]

31 if U'[ugn] = O A By, contains g, then

32 ‘ Remove wu;, from U’

33 end

34 end

35 end

36 end

37 end

38 end

39 if cop((m,n)) < threshold then break ;

40 end

a1 end

42 ... continues on the following page

40
41
42 ... continuation of Algorithm 19

43 if j = m A cop((m,n)) >= threshold then

44 if U’ contains k then

45 Put &k to B;,

46 if U'[k] contains n then

a7 Put n to Bou[k]

48 if » = true then

49 Remove n from U'[k]

50 if U'[k] = 0 then Remove k from U’ ;

51 end

52 if

C = EachBorderOnce VN C = Comprehensive EachBorderOnce
then

53 for each n;, € U' do

54 if U'[n;y] contains n then

55 Put n to Bout[1in]

56 if r = true then

57 Remove n from U'[n;,]

58 if U'ni,] =0 A By, contains n;, then
59 ‘ Remove ng, from U’

60 end

61 end

62 end

63 end

64 end

65 end

66 end

67 end

68 end

69 end

70 Qin = 0

71 for each b € B;, do

72 if U' contains b then

73 if U'[b] = () then

74 Gin = Qin + 1

75 if » = true then Remove b from U’ ;
76 end

77 end

78 end

79 Qout = 0

8o for each k € B,y Ao qouwt = Gout + Bowt|K] ;
81 G = Qin + Qout

s2 return (q,U’)

Chapter 5
Baseline Algorithms

In the present experiments, we used two types of baselines to compare the SPC, ANT,
and AGA algorithms with. The initial baseline in Section 5.1 gives an account of how
effective it might be to test the problem presented in this thesis by test paths satisfying
the established test coverage criteria, namely, Fdge, Edge-pair, and TDL 3.

The second baseline, the Test Requirements-based algorithm (TR) algorithm, utilized
an existing algorithm generating test paths for an input set of test requirements. This
baseline served as a comparison of the proposed SPC, ANT, and AGA algorithms with
an alternative based on the established test requirements approach. This approach is

detailed in Section 5.2.

5.1 Initial Baseline

In the initial baseline, we used T satisfying Fdge, Edge-pair, and TDL 3 coverage criteria,
which were selected based on their wide application in system testing projects [12], [31],
[34].

To satisty the Edge coverage, each edge of G must be present at least once in at
least one t € T' [12]. To satisfy Edge-pair coverage, each possible combination of the two
adjacent edges in G must be present at least once in at least one ¢ € T' [12].

To satisty the TDL & coverage, each possible sequence of the three adjacent edges in
GG must be present at least once in at least one t € T' [34]|. Edge coverage is equivalent to
TDL 1 and the Edge-pair coverage is equivalent to TDL 2.

To generate T' that satisfies the Fdge, Edge-pair, and TDL 3 coverage, we used the
Process Cycle Test (PCT) algorithm in the Oxygen platform [110].

To evaluate the experiments, we used the test case evaluation criteria £ defined in
Table 4.1. Furthermore, a vital indicator in this evaluation is E(T") for evaluating the

FachBorderOnce criterion and A(T) for evaluating AllBorderCombinations, defined as

63

follows:

b_nodes(T) :
E(T) = — - 100% fi threshold.
(T) lin(G, threshold)| + |out(G, threshold)| % for given thresho
b d irs(T
A(T) _node_pairs(T) - 100%, where b_node pairs(T) denotes the

- b_node pairs(G,threshold)
number of pair combinations of a LCZ IN node with a LCZ OUT node that are present in

t €T,and b _node pairs(G,threshold) denotes the number of all possible LCZ IN and
LCZ OUT node combinations required to be present in the test paths of T" according to
the AllBorderCombinations criterion for a given threshold.

Herein, we considered the E(T') and A(T') to measure the extent to which 7" satisfying
the Fdge, Edge-pair, or TDL 3 criteria also satisfies the FachBorderOnce, AllBorderCom-
binations, ComprehensiveFachBorderOnce, and ComprehensiveAllBorderCombinations
criteria.

Based on the definitions of the FachBorderOnce and AllBorderCombinations criteria,
if T" satisfies EachBorderOnce, E(T) = 100%. If T satisfies AllBorderCombinations, then
E(T) = 100% and A(T') = 100%. Furthermore, if T satisfies Edge , Edge-pair and TDL
3, E(T) = 100%.

The rules applicable on E(T') and A(T') for ComprehensiveEachBorderOnce are iden-
tical to those for FachBorderOnce, and similarly, the rules for ComprehensiveAllBorder-

Combinations are identical to those for the AllBorderCombinations criterion.

5.2 Test Requirements-based Algorithm

The TR employs the test requirements concept for 7" generation. As introduced in Section
2.2, each test requirement r € R contains a path p that must be present in the final set
of the test cases T'. In this case, p represents the path from an LCZ IN to an OUT node.
First, the TR algorithm creates a set of test requirements R that ensures 7' satisfies the
given test coverage criterion C.

Second, TR uses an existing greedy set-covering algorithm, published by Nan Li et al.
[13] to solve the minimum cost test paths problem. The core set-covering sub-problem in
their algorithm is solved by adapting an approximation algorithm for the shortest super-
string problem.The input to the greedy set-covering algorithm is a set of test requirements
R and a small set of test paths T'P. The test path here is a path in G.

5.2.1 The Main Algorithm

The main routine of TR is described in Algorithm 20. It starts with our GetTestRequire-
ments procedure to construct a set of test requirements R. Along with an SUT model

G, R composes the inputs to Li’s SetCoveringAlgorithm procedure [13|, which combines

CHAPTER 5. BASELINE ALGORITHMS 65

each path in R into a single long path called the super-test requirement [[. Subsequently,
the GetSmallSetO fTestPaths procedure traverses G and generates a set of all possible
test paths TP. Ultimately, TP, [], and G are inputs to Li’s SplitSuperTest Requirement
procedure [13] that, based on T'P, splits the super-test requirement [] into the final set
of the test paths T', each of which is adjacent, starts in n,, and ends in one of n, € N,.
As the selected test coverage criterion C is reflected in the set of test requirements R, it

is also satisfied by T

Algorithm 20: TR(G, C, threshold): The main routine of the TR algorithm
which creates a set of test requirements R to tour through LCZs and using this
set, it constructs 1" as a set of test paths containing these test requirements.
Input : SUT model G, coverage criterion C, threshold
Output: set of test cases T’
1 R + GetTestRequirements(G, C, threshold)
2 [[< SetCoveringAlgorithm(G, R) > Defined in [13]
3 TP < GetSmallSetOfTestPaths(G) > Defined in [13]
4 T < SplitSuperTestRequirement(G, [[, TP) > Defined in [13]
5 return 7'

5.2.2 Extraction of Test Requirements

Our procedure GetTestRequirements, defined in Algorithm 21, iterates £ and determines
all the shortest paths from each x € in(L) to all y € out(L) for each L € L.

After selecting the AllBorderCombinations coverage criterion, this is the only necessary
step. Accordingly, the algorithm adds all the found shortest paths to R; otherwise, if
FachBorderOnce coverage is selected, the algorithm reduces the set of found paths. First,
the algorithm sorts the paths based on their lengths and stores them in a new list X.
Second, the algorithm traverses X and adds to R only those paths that contain only LCZ
IN or LCZ OUT nodes and were not added to R yet.

Note that TR can be used as an objective baseline only for the FachBorderOnce
and AllBorderCombinations test coverage criteria. For ComprehensiveEachBorderOnce
and ComprehensiveAllBorderCombinations, this baseline is not applicable for comparison
because these two test coverage criteria cannot be satisfied using the test requirements
approach employed in TR (refer to Section 4.2). In principle, we cannot instruct the TR
algorithm by which edge the test path shall enter and leave particular LCZ border nodes
(which is a part of the definition of the ComprehensiveEachBorderOnce and Comprehen-

siveAllBorderCombinations criteria).

Algorithm 21: GetTest Requirements(G,C, threshold): Construct a set of
test requirements R that would used further in 7' generation to tour all L €
L(G, threshold) in the manner that C would be satisfied.

Input : SUT model G, coverage criterion C, threshold
Output: set of test requirements R

1 R+ 0
2 if C = AllBorderCombinations then
3 for each L € L(G,threshold) do
4 for each x € in(L) do
5 for each y € out(L) do
6 R <+ R U{ the shortest path from z to y leading through nodes
inside L }
7 end
8 end
9 end
10 return R
11 end
12 if C = FachBorderOnce then
13 for each L € L(G,threshold) do
14 for each x € in(L) do
15 for each y € out(L) do
16 R, < R; U { the shortest path from z to y leading through nodes
inside L }
17 end
18 end
19 X <« list of paths from R; sorted by their length in ascending order
20 Lin < in(L), Loy < out(L)
21 for each p € X starting with the shortest path do
22 Pin < the first node in p
23 Pout <— the last node in p
24 if p;, € L;, then
25 LG — LG\{pzn}y Lout — Lout\{pout}
26 R+ RU{p}
27 end
28 else if p, € Loy then
29 Lout < Lout\{pout}
30 R+ RU{p}
31 end
32 end
33 end
34 return R

35 end

Chapter 6
Portfolio Strategy

The LNCT considers four distinct test coverage criteria, C. Owing to the problem com-
plexity, variability in the G topology, and the diverse nature of the test set evaluation
criteria &, the development of a universal algorithm to compute the best T" with the given
inputs is difficult for all possible SUT models. Therefore, we propose a portfolio strategy
for generating the best 7" for a general G.

The portfolio strategy is defined in Algorithm 22. As inputs, it accepts G, threshold, C,
and &£ and outputs T'. In the first segment of its execution, it computes the individual test
sets T' satisfying the selected coverage criterion C for the SUT instance G and threshold
by all the proposed algorithms: SPC, ANT, AGA, and TR (the last algorithm is executed
only if C is AllBorderCombinations or EachBorderOnce). Subsequently, it determines the
best T' considering the test set optimality criterion &£.

In this thesis, the run time of the portfolio strategy was calculated as the sum of
the run times of all the proposed algorithms, neglecting the additional time required for
selecting the best T using £. To optimize the computation run time, the SPC, ANT,
AGA, and TR baseline algorithms can be concurrently executed to obtain a portfolio
strategy run time that is equal to the sum of duration of the longest-running algorithm
for the computed problem and the time required for selecting the best T

Another possibility for reducing the run time of the portfolio strategy is to selectively
execute the algorithms that are most likely to return the best results for the given com-
bination of the selected G' properties (|N|, |E|, deg(n), |N.|, cycles, |£], |in(G)|, and
lout(G)]), C, and €. To perform such a selection, we would need to analyze the possi-
ble correlation of the properties of T' generated by the proposed algorithms for various
combinations of input values with the properties of G.

However, compared with the portfolio strategy version presented in Algorithm 22, such
a solution would not assure the selection of the best test set T" for a general G, and thus,

we do not present such an adjustment in this thesis.

67

Algorithm 22: Port folio(G,threshold,C,E): Compute T for G and threshold
by SPC, ANT, AGA, and TR algorithms and determine the best T" by &.

-
N R

Input : SUT model G, threshold, coverage criterion C, and test set optimality
criterion £
Output: set of test cases T’
Tspc 0, Tant < 0, Taga < 0, Trp <0
Tspc < SPC(G,threshold,C)
Tant + ANT(G, threshold,C)
Taga < AGA(G, threshold,C)
if C = AllBorderCombinations V C = FEachBorderOnce then
Trr < TR(G,threshold,C)
T < a test set from {Tspc, Tant, Taca, Trr} having the best value of given €
end
else
‘ T <+ a test set from {Tspc, Tant, Taga} having the best value of given £
end
return T'

© 00 g o 0k W N =

=
o

Chapter 7

Methods of the Experiments

In the experiments, we compared the test cases created by the proposed SPC, ANT, and
AGA algorithms with all baselines for a set of 310 SUT models and all test coverage criteria
introduced in Section 4.2. To compare the test cases, we used the evaluation criteria
defined in Section 4.3, criteria defined in Section 5.1, the run times of the algorithms, and
the potential of the test cases to detect artificial defects, further defined in Section 7.3.

In this section, we present the experimental method and setup.

7.1 Implementation of Algorithms

The SPC, ANT, AGA, and TR algorithms as well as the portfolio strategy were imple-
mented in the Oxygen® system. Oxygen is an open-freeware MBT platform developed by
our research group, which allows the modeling of an SUT and the generation of test cases
using various implemented algorithms [110]. To allow for the creation of a SUT model G,
we extended the graphical editor of the application.

An exemplary SUT model constructed using Oxygen is illustrated in Figure 7.1, which
depicts the UML Activity Diagram of a Smart Home inspired by the system proposed
by Aravindan et al. [111]. The central server of a Smart Home communicates over a
network comprising three subsystems: first, a database server in which the nodes B-C-
D-E-F—-(@) represent a subprocess handled by this subsystem; second, a central IoT server
(the subprocess handled by this subsystem is modeled by nodes H-I-J-K); and lastly,
a Raspberry Pi connected with sensors and actuators (the subprocess provided by this
subsystem is modeled by nodes N-O-P-END T). In this example, the nodes and edges
were designated with letters and numbers for simplicity; however, for industrial use, the

names can be set to any string.

1Java 1.8 executable JAR file packed into a ZIP archive available at http://still.felk.cvut.cz/
download/oxygen_lnct.zip

69

http://still.felk.cvut.cz/download/oxygen_lnct.zip
http://still.felk.cvut.cz/download/oxygen_lnct.zip

When the central server communicates with the external subsystems, the probability
of a network outage is higher than the threshold level. Therefore, LCZ zones are formed
and visually separated from the remaining part of the graph using light-brown arrows
and borders; moreover, the symbols of the LCZ IN and LCZ OUT nodes are filled with
a light-brown background. In the left application panel, the T generated by the SPC

algorithm was visible and denoted as the Test situations.

Oxygen - m} X

File Exportlmport Graph Help

| Validate graph || Generate test cases || Zoom in ” Zoom out || Undo || Redo || Showihide priorities || Add Icz err pair || Remove Icz err pair || Show LCZ >= ”U.5 ‘

¢ 4 SmartHomes Graph details
D CRUD matrix . D Q © Name
[Functions Start Activity Decisien End
Nodes
D Entities Sum 21

T :: SmartHomes
i Test situations

High 0
Medium: 0
Low:. 0
Other: 21
Border nodes: 0

D

Edges
Sum 30
High 0
Medium: 0
Low: o
Other: 30

LCZ error pairs
Mo error pair de...
Description

4] Il

Nodes/Edg 1 2 6 26 g 7 37 22 12
START A -
A - B - -
B - - E F N
D - - - - E
[«] Ll |41 T] I

I *

Link to documentation

Version

[4]

Figure 7.1: Sample SUT model with highlighted LCZs in the Oxygen application.

When the user clicks on the "Test situations" in the left project tree, a pop-up window
opens with the individual test cases. If the user selects a set of test cases from the list, the
test cases are visually highlighted in the model with bold arrows. In the sample depicted
in Figure 7.2, we observe the highlighted test case (composed of nodes START-A-B-F-
C-G-H-J-R-P-O-END T).

A part of the Oxygen platform development version is a module that compares the
algorithms, and we configured this module for LNCT. The comparison module facilitates
the execution of multiple algorithms on a given set of SUT models (saved in Oxygen
format). After generating the test cases for an SUT model, the module computes the
defined properties (here, a set of evaluation criteria; refer to Sections 4.3 and 5.1) and
exports the results as a consolidated summary report in a CSV file, which enables further

data processing and analysis.

CHAPTER 7. METHODS OF THE EXPERIMENTS 71

3 owgen - o x
File Exportimport Graph Help

‘ Validate graph || Generate test cases || Zoom in ” Zoom out ” Undo || Redo || Showihide priorities || Add lcz err pair || Remave Icz err pair ” Show LCZ >= Hﬂ 5 ‘

¢) SmartHomes Test cases defails
D CRUD matrix . D <> Name
[Functions Stat Activity Decision End
D Entities Hals
? ,: SmartHomes START

i Test situations

D

m Test situations 1, LCZ Level == 0,5, Coverage= COMPACT... X

Sub-combinations of edges | Test situations

No. Test sequence “‘L
1 1-2-6-7-30

2 1-2-26-37-28-22-24-31-33-38-44 26 5 7 37 22 12
3 1-2-26-37-28-22-32-20-41-38-44

mi»

Statistics not available for imported test cases. E -
o T r r g e - B : - B
I I I I I

I D £ I I [+]

[«]

Figure 7.2: Highlighting selected test cases in a SUT model in the Oxygen application.

7.2 Sources of SUT Models used in Experiments

To compare the performance of the algorithms SPC, ANT, and AGA with the baselines,
we prepared 310 different SUT models, varying in terms of |N|, |E|, number of LCZs
(denoted as |£]), number of potential LCZ IN and LCZ OUT nodes (denoted as |in(G)|
and |out(G)],), number of cycles (cycles), average node degree (W), and |N,|.

We created 163 models from real IoT projects and added another 147 artificially
created or generated models.

Accordingly, the distribution of the nature of sources of the SUT models is visualized

in Figure 7.3. The set of SUT models consists of:

1. Three process models and 24 of their modifications from the experimental IoT-based
rescue-mission planning and management system for the Czech Police? and Moun-

tain Rescue Service, for which our lab created a test strategy and test automation

suite;

2. Five process models and 39 of their modifications from our Digital Triage Assistant

(DTA)? project to implement a sensor network aimed to reduce fatal casualties

Zhttps://www.policie.cz/clanek /projekt-patrac.aspx (in Czech)

3https://edition.cnn.com/videos/tech /2023 /02 /20 /digital-triage-assistant-soldiers-nato-sensors-orig-
contd-zt.cnn

No | Model ID IoT System Domain Reference
1 148 Smart Farming [112]
2 149 Monitoring and Controlling of Sub-station Equipment® [113]
3 153 Electrical Device Surveillance [114]
4 150 Personal Health Monitoring [115]
5 151 Smart Parking Reservation System [116]
6 155 Smart Parking System [117]
7 154 Patient Health Monitoring System [118]
8 156 Smart Homes [111]
9 152 Smart Water Consumption Measurement [119]
10 157 Smart Washing System of Street Lighting [120]
11 158 Smart Press Shop Assembly Monitoring [121]

Table 7.1: Existing third-party [oT systems, whose models were used in experiments.

in defense operations or critical situations in which the army supports the first

responders;

3. Three process models and 23 of their modifications from our Teresa* project to
create a sensor network for the telerehabilitation of post-acute phase COVID-19
patients [16],

4. Eleven models and 55 of their modifications of other real third-party IoT systems de-
scribed in recently published studies, where a relevant process model was presented
(listed in Table 7.1; Model ID refers to Tables 7.3 and 7.4);

5. Artificially created 119 models with a topology resembling those models from pre-

vious categories 1.-4., and,

6. Artificially created 28 models by a specialized model generator to achieve variety in

the topology of the models used in the experiments.

The model modifications used in set parts 1.-4. were created via modification of the
G topology by adding and removing nodes and edges, COP, and relocating the LCZs.
As such, the goal was to create a wide variety of problem instances while maintaining a
model topology that resembles a real system. In part 4., the LCZs were estimated by
analyzing the IoT systems described in studies listed in Table 7.1.

The inputs to the model generator presented in part 6. include |N|, |E|, |N|, cycles,
number of LCZs |£| and for each LCZ L, the numbers of nodes, edges, cycles, in(L) and
out(L). As an output, G is generated.

“https://aktualne.cvut.cz/en /reports/20210721-teresa-project-enables-rehabilitation-of-covid-19-
patients-in-the-home-environment
Spower grid elements as transformers, circuit breakers, or relays

CHAPTER 7. METHODS OF THE EXPERIMENTS 73

Nature of projects 1.-3. render them ideal candidates for LNCT verification. In
addition to potentially frequent connectivity outages, Systems 1. and 2. are highly
dynamic and have a mission-critical character.

The rescue mission management system supports missions that are generally operated
in areas weakly covered by GSM signal, such as forests, mountains, or rural areas. Rescue
missions are orchestrated for lost persons who are at risk by staying longer without contact
in an uninhabited area (e.g., children, elderly people, or people with a specific medical
condition) in situations with no mobile phone to contact them. The system employs GPS
trackers for mission participants (humans and search dogs separately) with a dynamic
back-end (located in a police or mountain rescue service vehicle). Instead of a GSM
network, a mesh network can be used to increase network reliability for communication.

The Digital Triage Assistant represents an even more extreme case in terms of potential
network connection unreliability. The current version of the system does not use a GSM
network and transmits the data via a proprietary radio channel. The GSM network is
allowed only in use cases for an integrated rescue system, where the GSM network is not
shut down for security reasons. In addition to network unreliability, a weaker signal can
be caused by difficult terrain, military vehicle armoring, or distance (e.g., back-end part
of the system mounted in a MEDEVAC helicopter). Moreover, the system components
can be damaged or destroyed during a mission or the radio signal can be jammed.

The Teresa project uses a GSM network and a spatially stable back-end. However,
various types of outages can hinder the data transmission from patients. For instance,
the first controlled study with the patients uncovered certain even comical cases of con-
nectivity outages [16], e.g., a patient lost a smart bracelet while gardening, the wireless
connectivity was being disrupted by too many transmitting devices in a makeshift smart
home, or several patients were "playing" with the bracelets and mobile phones, which dis-
rupted the configuration of their connectivity to the system. All these situations created

great application cases for the LNCT when testing these systems.

7.3 Simulation of System Defects

To evaluate the effectiveness of the generated T for detecting defects caused by limited
network connectivity, we extended the SUT model by simulating these defects. Based
on the problem described in Section 4, two major situations can occur. First, a defect is
present at the border node of the LCZ. This defect is activated when this border node
is visited during a process flow in the SUT. Given the test coverage criteria defined in
Section 4.2, all these defects will be detected by the LNCT through T satisfying any of

the test coverage criteria defined in Section 4.2. Therefore, it is not necessary to include

3.5%

27.7%

3.5%

17.7%

Our real-life system - original - Rescue mission system, Teresa and DTA
Our real-life system - modified models

Third-party real-life system - original

Third-party real-life system - modified models

Artificial models with topology resembling used real-life systems

Models generated completely artificially

Figure 7.3: Distribution of sources of SUT models used in experiments.

such defects in the evaluation.

Second, a defect can be more complex. For particular threshold, it can be simulated
as a pair (Nout, Mpack), where ngy, € in(G, threshold) represents a node of an SUT process
model G in which the network connectivity is disrupted. This impacts the SUT such
that when the process flow proceeds to a node np,er € out(G,threshold), the defect is
activated and demonstrates itself. We added a set of such simulated defects (nout, nback)
to the created SUT models. We denote the set of these defects in an SUT model G as
X(G).

The number of (Mg, Npack) defect node pairs in each G was set based on a random
number in the interval from z|L£| to 2|£[, and both the interval boundaries were approxi-
mated to the nearest integer. In every LCZ with generated defect node pairs, their exact
number was equal to a random number in the interval from % to % of the total number of
combinations of LCZ IN and LCZ OUT nodes between whose exists a path. Both interval
boundaries were rounded up to the nearest integer.

We inserted artificial defects into SUT models by automated routine modifying the
Oxygen project file (based on the XML format) containing the model definitions. A user
can review the inserted defects for a particular SUT model in Oxygen application, where

these defects can also be defined manually. In the example presented in Figure 7.4, the

CHAPTER 7. METHODS OF THE EXPERIMENTS 75

green rectangle encompasses an overview of the defect node pairs defined in the SUT

model.

Oxygen - O X

File Exportimport Graph Help

:E:E ‘ \Validate graph || Generate test cases || Zoom in ” Zoom out ” Undo || Redo || Showihide priorities || Add lcz err pair || Remave Icz err pair ” Show LCZ >= Hﬂ 5 ‘

¢) SmartHomes Graph details
D CRUD matrix . D <> Name
D Functions Start Activity ~ Decision End
" Nodes
D Entities

Sum 21
High' 0
Medium: 0
Low: 0
Other: 21
o H K Bordernodes: 8
Edges

o :: SmartHomes

D

43
P& A sum 30
9 High 0
™ Medium: 0
- Low: 0
Add LCZ error pair X k Other: a0
LCZ error pairs
LCZ IN node H g

ENDT

©
Tescrpaon

[F -]

LCZ OUT node
B
_ 4

Nodes/Edg 1 2 6 26 5 7 a7 22 12
START A 5
A E B - -
B 5 5 E F 5
D E E - - E F
1] i I [»]

Link to

[« [mf»

Version

Figure 7.4: Visualization and manual definition of artificial defects in Oxygen application.

To measure the effectiveness of T in detecting these artificial defect node pairs in G,

tivated
we use 1 = genvaredr 100%, where activatedr denotes the number of artificial defect

IX(G)]
node pairs activated (visited) by test case t € T'. These results must be considered in the
context of the size of T, namely, [(T"). Here, we considered ¥ = % as an indicator of
the effectiveness of T' for activating defect node pairs inserted in GG. As such, a higher ¥

indicates better potential for defect detection.

7.4 Detailed SUT Models Properties

The overall properties of the SUT models used in the experiments are summarized in
Table 7.2, including the minimal (MIN), maximal (M AX), average (T), and median (7)
values of the individual model properties discussed earlier.

In the experiments, the cop(e) for all LCZ edges was set to 50%, and the threshold
was set to 50%.

Complete overviews of the SUT models used in the experiments are listed in Tables
7.3 and 7.4.

NI |E] deg(n) [Ne| cycles |L] [in(G)| Jout(G)| |x(G)]
MIN| 11 13 211 1 0 1 1 1 1
MAX | 325 488 426 21 35 6 14 17 23
T 4876 7311 3.00 4.09 573 237 464 612 585
F| 40 61 297 4 4 2 4 6 5

Table 7.2: Overall properties of SUT models used in experiments.

7.5 Computation of Test Cases

The computation of T" performed on a machine with OS Windows 11, Java version 19.0.1,
and the following hardware configuration: Intel(R) Core(TM) i5-10210U CPU @ 1.60GHz
2.11 GHz, 16 GB RAM with an SSD disk. We computed T for all the 310 SUT models
introduced in Sections 7.2 and 7.4.

As the SPC, ANT, AGA, and TR algorithms have a nondeterministic nature, the T’

for these algorithms was computed ten times and the results were averaged.

CHAPTER 7. METHODS OF THE EXPERIMENTS 7
ID| [N| [E| deg(n) [Ne| cycles |L] |in(G)] lout(G)| [x(G)] | ID | [N| |E| deg(n) [Ne| cycles |L] |in(G)] |out(G)] [x(G)]
1119 30 3.16 1 5 1 2 1 1 78 | 25 43 3.44 4 1 2 4 6 7
224 38 317 2 7 1 2 1 2 | 7920 48 331 5 0 3 5 8 6
324 38 317 2 7 1 3 1 2 |8 |20 40 4 1 10 2 4 2 3
4030 49 320 1 7 2 4 3 3 |8)20 4 4 1 12 3 5 4 4
503 49 320 1 7 1 2 2 1 |82 |22 37 33 3 9 3 7 5 4
62 40 32 1 7 1 1 3 1 |8 |30 49 321 1 8 3 4 3 4
7|25 40 3.2 1 7 1 4 1 2 84 | 40 70 3.5 1 15 2 3 2 3
8 133 52 315 1 7 2 2 4 3 85 | 40 81 4.05 2 14 2 4 7 6
o33 52 315 1 1 1 2 1 1 |8 |24 45 375 5 10 2 5 7 8
028 46 320 4 6 3 5 9 o |8 |50 100 4 2 2 3 6 5 2
1128 48 343 4 5 1 1 2 2 | 88|54 103 388 3 21 3 5 6 5
12025 38 304 1 4 1 1 2 1 |89 |60 104 347 1 15 3 5 7 5
1325 38 304 1 4 2 4 2 2 o0 |3 5 338 1 11 1 3 5 8
4|26 41 315 1 2 2 4 5 5 o179 140 354 1 25 3 4 3 3
15125 39 312 1 2 2 3 5 5 92 | 61 105 3.44 1 16 3 6 6 4
16 | 40 57 285 3 3 3 4 7 6 93 | 42 78 3.71 2 16 1 3 6 7
17040 57 285 3 3 2 6 6 9 | o436 6 38 2 18 2 5 6 6
1840 57 285 3 3 2 6 5 9 |95 40 6 345 1 2 1 1 1 1
919 26 274 1 0 1 2 1 1 |9 |50 9 396 2 2 3 8 8 7
20019 26 274 1 0 2 2 3 3 | ot |54 115 426 4 2 2 6 U2
21030 38 253 6 1 1 2 3 2 | 98|93 170 366 2 20 3 8 o1
22030 49 320 6 4 2 5 7 8 |93 45 3 2 3 2 4 4 4
231 31 42 271 3 1 2 4 2 3 100 | 24 45 3.75 4 6 2 2 6 5
241 30 47 313 7 0 1 1 2 1 101 20 32 3.2 4 6 1 1 2 2
25(30 50 333 6 1 1 3 4 5 ||102)25 46 368 3 4 1 3 2 4
2635 5 331 4 3 1 2 2 3 ||103)25 45 36 4 2 2 4 6 8
27/ 30 48 32 3 1 1 4 4 6 10430 49 3271 1 0 3 6 6 4
28(30 45 3 1 1 1 2 3 3 |105/3 5 36 1 4 3 4 3 2
20030 44 293 3 0 1 3 3 50 |106]3 51 200 4 5 2 3 6 4
301 32 51 319 2 2 2 5 5 5 107 | 35 47 2.69 7 3 1 3 2 2
31| 30 43 287 2 0 1 2 2 2 108 | 40 64 3.2 3 0 3 3 9 7
32130 46 3.07 2 1 2 3 5 3 109 | 40 60 3 5 3 2 5 2 4
33|34 47 276 1 2 1 3 2 3 |uoj4 7 32 4 1 3 3 4 4
34033 50 303 4 2 2 5 3 3 |45 58 258 2 0 1 2 1 2
353 58 33 1 3 3 6 5 6 |u2{s0 77 308 4 4 2 5 5 4
36|31 38 245 2 0 1 1 1 1 |u3s0 9 36 4 1 3 6 7 7
37|30 42 28 3 1 1 2